Читаем Примени математику полностью

12.6. Кратчайшая дорога Магистраль и канал пересекаются под углом меньше 45°, внутри которого расположен населенный пункт. Как проложить кратчайшую дорогу, проходящую от одного пункта сначала к берегу канала, а затем к магистрали?

12.7. Мост через канал Два населенных пункта расположены по разные стороны от широкого канала. Требуется построить мост через канал (перпендикулярно берегам) и проложить к нему дороги от обоих пунктов. В каком месте следует построить мост, чтобы в итоге путь между данными пунктами оказался кратчайшим?

12.8. Железнодорожная платформа По одну сторону от железной дороги расположены два населенных пункта. В каком месте дороги следует построить платформу заданной длины, чтобы сумма расстояний от нее до данных пунктов была наименьшей?

12.9. Кратчайший маршрут Две магистрали пересекаются под острым углом, внутри которого расположены два населенных пункта. Как проложить кратчайший маршрут автобуса, соединяющий два данных пункта и имеющий выезды к каждой из двух магистралей в заданном порядке?

12.10. Где построить мост? Две магистрали пересекаются под углом, внутри которого протекает речка. Где построить мост через речку, чтобы сумма расстояний от него до обеих магистралей была наименьшей?

12.11. Где построить завод? Три магистрали, пересекаясь, образуют треугольник. В какой точке этого треугольника следует построить завод, чтобы сумма расстояний от него до всех трех магистралей была наименьшей?

12.12. Направление магистрали В каком направлении через город должна проходить магистраль, чтобы сумма расстояний от нее до двух данных населенных пунктов была наименьшей?

12.13. Наилучшее расположение Как должна проходить магистраль, чтобы сумма расстояний от нее до трех данных населенных пунктов была наименьшей?

12.14. Выбор маршрута Три завода расположены в вершинах разностороннего треугольника и соединены друг с другом магистралями. Внутри этого треугольника на одинаковом расстоянии от магистралей находится населенный пункт, который напрямую соединен дорогой с каждым заводом.

Каким должен быть кратчайший замкнутый маршрут автобуса, предназначенного для развозки жителей населенного пункта по всем трем заводам?

12.15. Как проложить дорогу? Две магистрали пересекаются под углом, внутри которого расположен населенный пункт. Как проложить через этот пункт прямую дорогу, соединяющую магистрали, чтобы замкнутый маршрут автобуса, проходящий по этой дороге и участкам магистралей между точками их пересечения с дорогой и друг с другом, был кратчайшим?

12.16. Кратчайший замкнутый маршрут Три магистрали, пересекаясь, образуют остроугольный треугольник. Как проложить кратчайший маршрут автобуса, имеющий выезды к каждой из трех магистралей?

12.17. С наименьшей суммой расстояний Три населенных пункта расположены в вершинах остроугольного треугольника. Где нужно построить завод, чтобы сумма расстояний от него до всех трех данных пунктов была наименьшей?

12.18. Проселочная дорога Через город проходит магистраль, на некотором расстоянии от которой находится населенный пункт. Требуется соединить проселочной дорогой магистраль с пунктом так, чтобы в итоге время проезда из города в этот пункт было наименьшим. От какой точки магистрали нужно отвести дорогу, если известно, что скорость транспорта по проселочной дороге в k раз меньше, чем по магистрали?

Решения


12.1. Кратчайший маршрут катера совпадет с хордой АВ, перпендикулярной радиусу ОС, проходящему через островок D (если островок находится в центре круга, то все маршруты будут иметь одинаковую длину; поэтому мы рассмотрим здесь случай, когда D не совпадает с О, изображенный на рис. 27). Для доказательства этого утверждения проведем через точку D еще какую-либо хорду EF и проверим, что EF>AB. Действительно, перпендикуляр OG к хорде EF имеет меньшую длину, чем наклонная OD к этой хорде. Следовательно, EG>AD (так как в прямоугольных треугольниках OEG и OBD одинаковые гипотенузы ОЕ = ОВ, но разные катеты OGEF = 2EG>2DB = AB, т. е. хорда АВ короче любой другой хорды, проходящей через точку!).


Рис. 27


12.2. Завод нужно построить в точке Е пересечения диагоналей четырехугольника ABCD с вершинами в данных населенных пунктах (рис. 28). Докажем, что сумма расстояний от всех четырех пунктов А, В, С, D до любой точки F больше, чем до точки Е. Действительно, складывая неравенства


получаем неравенство AC + BD≤AF + BF + CF + DF, в котором равенство возможно только в случае, когда точка F лежит на обеих диагоналях АС и BD, т. е. когда F совпадает с Е. Именно это и требовалось доказать.


Рис. 28


Перейти на страницу:

Похожие книги

Величайшие математические задачи
Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Йэн Стюарт

Математика