Читаем Примени математику полностью

В-третьих, из всех положений магистрали, при которых она проходит хотя бы через два пункта, наименьшая сумма расстояний, разная расстоянию до магистрали от третьего пункта, достигается тогда, когда магистраль проходит через две наиболее удаленные друг от друга точки A, В или С. В самом деле, указанное расстояние до магистрали должно быть равно наименьшей высоте треугольника ABC, которая опущена, разумеется, на наибольшую сторону. Заметим, что случай, когда точки A, В или С лежат на одной прямой, также укладывается в описанную схему, а случай равенства каких-либо сторон треугольника ABC его наибольшей стороне дает возможность проводить магистраль по любой из этих сторон.

12.14. Пусть заводы расположены в вершинах треугольника ABC, а населенный пункт - в центре О вписанной в треугольник окружности. Пусть, кроме того, стороны треугольника имеют длины а = АВ, b = АС, c = ВС и касаются окружности в точках D, Е, F соответственно (рис. 38). Обозначим x = ОС, y = OВ, z = OA и докажем, что если a>b, то a + x>b + y. Действительно, из равенств отрезков касательных имеем


и, отразив точку С симметрично относительно точки F, получаем из неравенства треугольника OBG



Рис. 38


Положим для определенности, что a>b>c, тогда


Любой замкнутый маршрут, проходящий через точки О, A, В и С, можно считать составленным из прямых участков, которые соединяют эти точки в некоторой последовательности, начинающейся и кончающейся, скажем, точкой О. Тогда возможны только следующие три принципиально различных маршрута:

OCBAO, OBACO, OACBO,

а все остальные маршруты получаются из перечисленных заменой направления движения на противоположное. Длины этих маршрутов равны соответственно

x + c + a + z = l - (b + y),

y + a + b + x = l - (c + a),

z + b + c + y = l - (a + x),

где принято обозначение l = a + b + c + x + y + z. Поэтому наименьшую длину будет иметь последний из перечисленных маршрутов, т. е. маршрут, не проходящий по наибольшей стороне треугольника ABC.

12.15. Заметим прежде всего, что все прямые дороги, соединяющие две данные магистрали, можно разбить на группы дорог, образующих замкнутые маршруты одинаковой длины. Такими группами будут являться группы дорог, касающихся какой-то общей окружности, вписанной в угол между магистралями (дороги должны касаться той части окружности, которая обращена к точке D пересечения магистралей; рис. 39). Действительно, любая дорога АВ, касающаяся данной окружности в токе С, будет образовывать маршрут, длина которого не зависит от точки С, так как равна сумме длин касательных DE и DF к окружности, проведенных из точки L:



Рис. 39


Последняя сумма будет тем меньше, чем ближе центр окружности расположен к точке D.

Таким образом, для проведения искомой дороги достаточно выбрать ближайшую к точке D вписанную в данный угол окружность, которая еще допускает проведение к ней касательной из данной точки С. Такая окружность просто проходит через точку С, а строится она способом, примененным нами ранее при решении задачи 11.8 (проведем какую-нибудь вписанную окружность и найдем соответствующую точку С' ее пересечения с прямой DC, тогда в силу подобия искомый отрезок АВ будет параллелен касательной, проведенной к проведенной окружности в точке С).

12.16. Пусть магистрали образуют остроугольный треугольник ABC, а на сторонах АВ, АС и ВС автобус имеет выезды в точках D, Е и F (рис. 40). Построим точки G и Н, симметричные точке D относительно сторон АС и ВС соответственно. Тогда длина ломаной DFED равна длине прямой GEFH и является наименьшей (при фиксированной точке D, а с ней и фиксированных точках G и Н), если точки Е и F лежат на прямой GH. Наконец, для нахождения точки D, при которой отрезок GH имеет наименьшую длину, заметим, что угол GCH вдвое больше фиксированного угла АСВ, так как



Рис. 40


Поэтому основание GH равнобедренного (GC = HC) треугольника GCH имеет наименьшую длину, когда его боковая сторона GC минимальна. А эта ситуация в свою очередь реализуется, когда точка G, лежащая на отрезке, симметричном отрезку А В относительно прямой АС, является основанием перпендикуляра CG к этому отрезку, т. е. когда CD - тоже перпендикуляр к стороне АВ. Итак, доказано, что точка D выезда автобуса к магистрали АВ должна быть основанием высоты треугольника ABC. Аналогично доказывается, что и другие точки Е и F также должны быть основаниями высот этого треугольника.

12.17. Пусть населенные пункты обозначены через А, В, С, а искомая точка расположения завода - через D. Повернем треугольник ACD на угол 60° вокруг точки А в направлении полуплоскости, не содержащей точку В (рис.41). Получим треугольник AEF, удовлетворяющий равенствам

EF = CD, FD = AD,

так как треугольники ACD и AEF равны, а треугольник FD является равносторонним (AF = AD и ∠DAF = 60°).


Рис. 41


Перейти на страницу:

Похожие книги

Величайшие математические задачи
Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Йэн Стюарт

Математика