В-третьих, из всех положений магистрали, при которых она проходит хотя бы через два пункта, наименьшая сумма расстояний, разная расстоянию до магистрали от третьего пункта, достигается тогда, когда магистраль проходит через две наиболее удаленные друг от друга точки A, В или С. В самом деле, указанное расстояние до магистрали должно быть равно наименьшей высоте треугольника ABC, которая опущена, разумеется, на наибольшую сторону. Заметим, что случай, когда точки A, В или С лежат на одной прямой, также укладывается в описанную схему, а случай равенства каких-либо сторон треугольника ABC его наибольшей стороне дает возможность проводить магистраль по любой из этих сторон.
12.14.
Пусть заводы расположены в вершинах треугольника ABC, а населенный пункт - в центре О вписанной в треугольник окружности. Пусть, кроме того, стороны треугольника имеют длиныи, отразив точку С симметрично относительно точки F, получаем из неравенства треугольника OBG
Рис. 38
Положим для определенности, что
Любой замкнутый маршрут, проходящий через точки О, A, В и С, можно считать составленным из прямых участков, которые соединяют эти точки в некоторой последовательности, начинающейся и кончающейся, скажем, точкой О. Тогда возможны только следующие три принципиально различных маршрута:
а все остальные маршруты получаются из перечисленных заменой направления движения на противоположное. Длины этих маршрутов равны соответственно
где принято обозначение
12.15.
Заметим прежде всего, что все прямые дороги, соединяющие две данные магистрали, можно разбить на группы дорог, образующих замкнутые маршруты одинаковой длины. Такими группами будут являться группы дорог, касающихся какой-то общей окружности, вписанной в угол между магистралями (дороги должны касаться той части окружности, которая обращена к точке D пересечения магистралей; рис. 39). Действительно, любая дорога АВ, касающаяся данной окружности в токе С, будет образовывать маршрут, длина которого не зависит от точки С, так как равна сумме длин касательных DE и DF к окружности, проведенных из точки L:Рис. 39
Последняя сумма будет тем меньше, чем ближе центр окружности расположен к точке D.
Таким образом, для проведения искомой дороги достаточно выбрать ближайшую к точке D вписанную в данный угол окружность, которая еще допускает проведение к ней касательной из данной точки С. Такая окружность просто проходит через точку С, а строится она способом, примененным нами ранее при решении задачи 11.8 (проведем какую-нибудь вписанную окружность и найдем соответствующую точку С' ее пересечения с прямой DC, тогда в силу подобия искомый отрезок АВ будет параллелен касательной, проведенной к проведенной окружности в точке С).
12.16.
Пусть магистрали образуют остроугольный треугольник ABC, а на сторонах АВ, АС и ВС автобус имеет выезды в точках D, Е и F (рис. 40). Построим точки G и Н, симметричные точке D относительно сторон АС и ВС соответственно. Тогда длина ломаной DFED равна длине прямой GEFH и является наименьшей (при фиксированной точке D, а с ней и фиксированных точках G и Н), если точки Е и F лежат на прямой GH. Наконец, для нахождения точки D, при которой отрезок GH имеет наименьшую длину, заметим, что угол GCH вдвое больше фиксированного угла АСВ, так какРис. 40
Поэтому основание GH равнобедренного
12.17.
Пусть населенные пункты обозначены черезтак как треугольники ACD и AEF равны, а треугольник FD является равносторонним
Рис. 41