Другой способ основан на том, что, находясь в поезде, можно услышать стук колес поезда о стыки рельсов. Зная длину одного рельса, равную обычно
13.4.
Заметим, что время, в течение которого автомобиль двигался со скоростью13.5.
Так как скорость поезда равна13.6.
Пусть за время х поезд прошел мимо телеграфного столба и в течение времени у он проходил по мосту длины в. Заметим, что время у прохождения моста можно разбить на время х прохождения всего поезда мимо начальной точки этого моста и время y-х прохождения хвоста поезда по мосту длины s. Поэтому скорость поезда, совпадающая со скоростью его хвоста, равна13.7.
Заметим, что вид горы в окне поезда можно сравнить с ее фотографией: если зафиксировать положение глаз относительно окна, то на стекле можно произвести необходимые замеры ничуть не менее эффективно, чем на фотографии. Применим метод, который был предложен для определения высоты памятника по снимку в решении задачи 10.4. Будем исходить из того, что пропорции на стекле более или менее соответствуют реальным пропорциям горы. Выберем две точки, расположенные примерно на одной горизонтали у основания горы, и вычислим отношение расстояния между этими точками к высоте горы по результатам измерений на стекле. Найдем реальное расстояние (точнее, его проекцию на прямую, вдоль которой идет железная дорога) между выбранными точками. Это можно сделать так: засечь время, в течение которого некоторая точка на стекле проходит (по мере движения поезда) путь от одной из выбранных точек до другой, а затем умножить это время на скорость поезда. Наконец, пользуясь вычисленной ранее пропорцией, подсчитаем и реальную высоту горы.Аналогично можно определять из окна самолета размеры, скажем, облаков, пользуясь информацией о скорости самолета, которая обычно объявляется во время полета.
13.8.
Бросим какой-либо легкий предмет в реку подальше от берега (на середину) и засечем время, за которое этот предмет проплывет по течению некоторый путь, соответствующий расстоянию между двумя точками берега. Теперь, измерив это расстояние и поделив его на засеченное время, получим скорость течения реки. Можно проделать то же самое несколько раз в разных местах реки и на разном удалении от берега, а после этого найти среднее арифметическое полученных значений скорости.13.9.
Выделим участок реки, имеющий известную длину s, и засечем время движения катера по этому участку в одном и в другом направлении - пусть это будут соответственно значения х и y, причем13.10.
Если обозначить через u и v скорости парохода (в стоячей воде) и течения реки соответственно, то расстояние между пристанями будет равно, с одной стороны,13.11.
Скорость велосипедиста при попутном ветре, согласно условию задачи, равна -