Читаем Примени математику полностью

Другой способ основан на том, что, находясь в поезде, можно услышать стук колес поезда о стыки рельсов. Зная длину одного рельса, равную обычно 12,5 м, и сосчитав количество n ударов колес, скажем, за 1 мин, находим скорость поезда:


13.4. Заметим, что время, в течение которого автомобиль двигался со скоростью 60 км/ч, больше, чем время, в течение которого он двигался со скоростью 100 км/ч. Поэтому и "вклад" меньшей скорости в среднюю его скорость больше, чем "вклад" большей скорости, а значит, средняя скорость должна быть меньше 80 км/ч. Более точно, эта мысль подтверждается определением средней скорости как отношения пройденного расстояния к времени движения. Действительно, если обозначить расстояние между городами через st то средняя скорость будет равна


13.5. Так как скорость поезда равна 1 км/мин, то через одну минуту после начала вхождения в тоннель поезд окажется расположенным полностью в тоннеле, а еще через минуту он покинет тоннель. Итого для прохождения тоннеля поезду понадобится две минуты.

13.6. Пусть за время х поезд прошел мимо телеграфного столба и в течение времени у он проходил по мосту длины в. Заметим, что время у прохождения моста можно разбить на время х прохождения всего поезда мимо начальной точки этого моста и время y-х прохождения хвоста поезда по мосту длины s. Поэтому скорость поезда, совпадающая со скоростью его хвоста, равна Длина же поезда равна расстоянию, которое он проходит за время x, т. е.

13.7. Заметим, что вид горы в окне поезда можно сравнить с ее фотографией: если зафиксировать положение глаз относительно окна, то на стекле можно произвести необходимые замеры ничуть не менее эффективно, чем на фотографии. Применим метод, который был предложен для определения высоты памятника по снимку в решении задачи 10.4. Будем исходить из того, что пропорции на стекле более или менее соответствуют реальным пропорциям горы. Выберем две точки, расположенные примерно на одной горизонтали у основания горы, и вычислим отношение расстояния между этими точками к высоте горы по результатам измерений на стекле. Найдем реальное расстояние (точнее, его проекцию на прямую, вдоль которой идет железная дорога) между выбранными точками. Это можно сделать так: засечь время, в течение которого некоторая точка на стекле проходит (по мере движения поезда) путь от одной из выбранных точек до другой, а затем умножить это время на скорость поезда. Наконец, пользуясь вычисленной ранее пропорцией, подсчитаем и реальную высоту горы.

Аналогично можно определять из окна самолета размеры, скажем, облаков, пользуясь информацией о скорости самолета, которая обычно объявляется во время полета.

13.8. Бросим какой-либо легкий предмет в реку подальше от берега (на середину) и засечем время, за которое этот предмет проплывет по течению некоторый путь, соответствующий расстоянию между двумя точками берега. Теперь, измерив это расстояние и поделив его на засеченное время, получим скорость течения реки. Можно проделать то же самое несколько раз в разных местах реки и на разном удалении от берега, а после этого найти среднее арифметическое полученных значений скорости.

13.9. Выделим участок реки, имеющий известную длину s, и засечем время движения катера по этому участку в одном и в другом направлении - пусть это будут соответственно значения х и y, причем x. Тогда скорость катера по течению реки равна , против течения , а полу разность этих скоростей равна скорости течения. В самом деле, если u - собственная скорость катера, а v - скорость течения реки, то разность скоростей по течению u + v и против течения u - v равна u + v - u + v = 2v, т. е. удвоенной скорости течения.

13.10. Если обозначить через u и v скорости парохода (в стоячей воде) и течения реки соответственно, то расстояние между пристанями будет равно, с одной стороны, 3(u + v), а с другой стороны, 4,5 (u - v). Поэтому 3(u + v) = 4,5(u - v), откуда u = 5v и s = 3*6v = 18v. Таким образом, плот проплывет это расстояние со скоростью v за 18 часов.

13.11. Скорость велосипедиста при попутном ветре, согласно условию задачи, равна - 1/3км/мин, а при встречном ветре - 1/5км/мин. Тогда собственная скорость велосипедиста равна полусумме двух указанных скоростей (см. решение задачи 13.9), а именно величине км/мин откуда получаем, что велосипедист в безветренную погоду проезжает 1 км за 3 минуты 45 секунд (но вовсе не за 4 минуты, как может показаться на первый взгляд!).

Перейти на страницу:

Похожие книги

Величайшие математические задачи
Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга — проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Йэн Стюарт

Математика