Читаем Примени математику полностью

313 = 303 + 3*30*31 + 1 = 27 000 + 2790 + 1 = 29 791. 1.22. Вычисление квадратов в разобранных примерах основано на формуле

a2 = (а+b)(а-b) + b2, в которой удачный подбор числа b сильно облегчает выкладки: во-первых, один из сомножителей должен оказаться "круглым" числом (желательно, чтобы ненулевой его цифрой была только первая), во-вторых, само число b должно легко возводиться в квадрат, т. е. должно быть небольшим. Эти условия реализуются как раз на числах а, близких к "круглым".

1.23. Пусть надо найти квадрат числа а, заключенного между 25 и 50. Тогда, пользуясь формулой из решения задачи 1.22, получаем

а2 - (а + (50-а)) (а - (50-а))+ (50-а)2 = 50 (2а-50) + (50-а)2 - (а-25)100 + (50-а)2, откуда следует справедливость предложенного способа.

1.24. Приведенные в решении задачи 1.23 выкладки справедливы для любого числа а, поскольку они не используют оценок 25<а<50. Для описания же процедуры возведения в квадрат двузначного числа а, большего 50, имеет смысл в соответствующем описании из условия задачи 1.23 "дополнение" числа а до 50 заменить дополнением 50 до числа а, а вычитание 25 из числа а - прибавлением 25 к уже найденному дополнению а - 50. Действительно, с учетом формулы из решения задачи 1.23 имеем

а2 = (а-25)100 + (50-а)2 - ((а-50)+25)100 + (а-50)2. Например, при а = 63 получаем

632 = (13 + 25)100 + 132 = 3969. 1.25. Для возведения в квадрат числа, близкого к 500, достаточно отнять от него 250 и, увеличив результат в 1000 раз, прибавить к нему квадрат разности между исходным числом и 500. Действительно, по аналогии с решением задачи 1.23 имеем

а2 - (а+ (500-а)) (а-(500-а)) + (500-а)2 = 500 (2а-500) + (500-а)2 = (а-250)1000 + (500-а)2, а при а = 492 получаем разобранный в условии пример.

§ 2. Не производя деления


Вопрос о том, делится ли данное число n нацело на другое число m, часто возникает в самых разных практических задачах. Один из способов выяснить это состоит в непосредственном делении числа n на число m, однако такой способ далеко не самый легкий. Желание иметь какие-либо критерии, позволяющие устанавливать факт делимости, не прибегая к операции деления, приводит нас к задаче о нахождении наиболее простых признаков делимости.

Некоторые признаки делимости (на 2, на 3, на 5, на 9) хорошо известны. Целью настоящего параграфа является создание более или менее целостной картины, выработка единого взгляда на систему методов, дающих различные признаки делимости. Разумеется, свойства чисел настолько богаты и разнообразны, что их вряд ли можно уложить в одну простую схему, дающую все признаки делимости. Мы постарались отобрать лишь такие свойства, из которых получаются наиболее эффективные, на наш взгляд, результаты.

Для решения приведенных ниже задач могут понадобиться некоторые сведения о целых числах. Напомним, что деление числа n на число m с остатком означает нахождение частного q и остатка r, для которых выполнены условия

n = qm + r, 0≤r Если r = 0, то говорят, что число n делится на m или кратно m. Мы будем разрешать деление не только положительных чисел, но и любых целых чисел вообще - при этом число q, возможно, будет отрицательным или нулем. Будем допускать также и деление с недостатком -r, т. е. представление числа в виде

n = qm - r, 0≤r Полезно знать следующие несложные факты (если они вам не известны, то попробуйте доказать их самостоятельно):

а) если два числа отличаются друг от друга на число, кратное m, то остатки от деления этих чисел на m совпадают, и наоборот;

б) сумма двух чисел имеет тот же остаток от деления на m, что и сумма остатков от деления этих чисел на m;

в) произведение двух чисел имеет тот же остаток от деления на m, что и произведение остатков от деления этих чисел на m;

г) если произведение двух чисел, одно из которых взаимно просто с числом m, делится на m, то второе из этих чисел делится на m, и наоборот;

д) если число делится на каждое из двух взаимно простых чисел, то оно делится и на их произведение.

Перейти на страницу:

Похожие книги

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное