Читаем Примени математику полностью

Число, десятичная запись которого состоит из k цифр n1, n2, ..., nk-1, nk, идущих справа налево, будем обозначать так: nknk-1...n2n1. При этом иногда под k-значным числом будем понимать также числа, имеющие на самом деле менее k цифр, не исключая возможности, что некоторые первые цифры числа являются нулями.

Решив предложенные в этом параграфе задачи, вы сможете конструировать свои, новые признаки делимости, а также научитесь использовать свойства делимости для контроля за правильностью арифметических действий.

2.1. Делимость на 5 Сформулируйте и докажите признак делимости на 5. Как найти остаток от деления числа на 5?

2.2. Делимость на 25 Докажите, что данное число делится на 25 в том и только в том случае, если на 25 делится число, полученное из данного отбрасыванием всех его цифр, кроме двух последних. Укажите, какие в этом случае могут быть две последние цифры числа.

2.3. Степени пятерки Сформулируйте и докажите признак делимости на 5k при k = 1, 2, 3, ...

2.4. Степени двойки Сформулируйте и докажите признак делимости на 2 и вообще на 2k при k = 1, 2, 3, ...

2.5. Упрощение для 4 Согласно общему признаку делимости на 2k, чтобы узнать, делится ли данное число на 4, достаточно проверить, делится ли на 4 число, полученное из данного отбрасыванием всех его цифр, кроме двух последних.

Как можно упростить проверку делимости двузначного числа на 4?

2.6. Упрощение для 8 Согласно общему признаку делимости на 2к, чтобы узнать, делится ли данное число на 8, достаточно проверить, делится ли на 8 число, полученное из данного отбрасыванием всех его цифр, кроме трех последних.

Как можно упростить проверку делимости трехзначного числа на 8?

2.7. По сумме цифр Докажите, что любое число при делении как на 3, так и на 9 дает тот же остаток, что и сумма его цифр.

2.8. Упрощение для 3 Согласно утверждению задачи 2.7, данное число делится на 3 в том и только в том случае, если на 3 делится сумма его цифр.

Как можно упростить проверку делимости суммы цифр числа на 3, не находя самой этой суммы?

2.9. Упрощение для 9 Согласно утверждению задачи 2.7, данное число делится на 9 в том и только в том случае, если на 9 делится сумма его цифр.

Как можно упростить проверку делимости суммы цифр числа на 9, не находя самой этой суммы?

2.10. Только 3 и 9 Докажите, что если признак делимости на число m (большее 1) не зависит от порядка цифр делимого, то само число m может быть равно только 3 или 9.

2.11. Проверка сложения Вы сложили несколько чисел и хотите проверить правильность своих вычислений. Для этого можно поступить следующим образом: найти остаток от деления на 9 суммы цифр полученного ответа, затем найти остаток от деления на 9 общей суммы цифр всех слагаемых. Если указанные два остатка не совпадут, то в вычислениях имеется ошибка. Дайте объяснение предложенному способу проверки сложения.

Придумайте аналогичный способ проверки вычисления алгебраической суммы, т. е. суммы нескольких целых чисел разных знаков.

2.12. Проверка умножения Вы перемножили несколько чисел и хотите проверить правильность своих вычислений. Для этого можно поступить следующим образом: найти остаток от деления на 9 суммы цифр полученного ответа, затем перемножить остатки от деления на 9 суммы цифр каждого из сомножителей и найти остаток от деления на 9 этого произведения, Если указанные два остатка не совпадут, то в вычислениях имеется ошибка.

Дайте объяснение предложенному способу проверки умножения. Придумайте аналогичный способ проверки деления (возможно, с остатком).

2.13. Надежна ли проверка? В задачах 2.11 и 2.12 приведены способы проверки вычислений, которые позволяют усомниться в правильности произведенных выкладок в случае несовпадения некоторых остатков от деления на 9.

Можно ли утверждать, что если указанные остатки совпали, то вычисления не содержат ошибок?

Можно ли это утверждать при условии, что вы ручаетесь за правильность всех цифр полученного в ответе числа, кроме, быть может, одной цифры?

2.14. В магазине Вы пришли в магазин и хотите купить 8 одинаковых авторучек, несколько карандашей по 4 копейки, линейку за 9 копеек, 2 общие тетради по 18 копеек и 12 тонких тетрадей. Продавец подсчитал общую стоимость товаров и попросил вас уплатить в кассу 5 рублей 27 копеек.

Как, по-вашему, не ошибся ли продавец?

2.15. Разложив на множители Сформулируйте признаки делимости на 6, 12, 15, 18, 24, 36, 45. Достаточно ли для проверки делимости числа на 24 установить его одновременную делимость на 4 и на 6?

2.16. Признак Паскаля Для получения признака делимости на m найдем заранее остатки m1, m2, m3,... от деления на m чисел 101, 102, 103,..., соответственно. Для любого числа определим число

Перейти на страницу:

Похожие книги

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное