Докажите, что числа n и fm
(n) дают одинаковые остатки при делении на m и могут делиться на m только одновременно. Проверьте, что нахождение остатка mk+1 при k = 1, 2, 3,... можно осуществить проще, если заметить, что он равен остатку от деления на m числа 10mk, (вместо числа 10k+1).2.17. Частные случаи
Проверьте, что сформулированные выше признаки делимости на 2, 3, 5 и 9 (см. задачи 2.4, 2.8, 2.1 и 2.9) представляют собой частные случаи признака Паскаля.2.18. Что лучше?
Получите из признака Паскаля признаки делимости на 4 и на 8. Сравните их с предложенными ранее в задачах 2.5 и 2.6.2.19. Модификация признака Паскаля
Для практического применения признака делимости на m, сформулированного в задаче 2.16, бывает удобнее некоторые из остатковПроверьте, что в результата указанной замены признак Паскаля сохранит силу.
2.20. Остаток от деления на 11
С помощью модификации признака Паскаля (см. задачу 2.19) придумайте способ, как найти остаток от деления данного числа на 11, не производя самого деления.Докажите, что данное число делится на 11 в том и только в том случае, если сумма его цифр, стоящих на четных местах, совпадает с суммой его цифр, стоящих на нечетных местах, или отличается от нее на число, кратное 11.
2.21. Еще одна проверка вычислений
По аналогии со способами, предложенными в задачах 2.11 и 2.12, придумайте способы проверки сложения и умножения, основанные на признаке делимости на 11 (см. задачу 2.20).Докажите, что если возможная ошибка затрагивает только одну цифру полученного в ответе числа, то наличие ошибки можно установить с помощью одного лишь признака делимости на 11.
2.22. Делимость на 7
Пользуясь модификацией признака Паскаля (см. задачу 2.19), сформулируйте признак делимости на 7.2.23. Разбиение цифр на группы
Когда степени десятки дают при делении на m большие остатки и недостатки, эффективность признака Паскаля (см. задачи 2.16 и 2.19) оказывается невелика, поскольку подсчет значения fm (n) в этом случае столь же трудоемок, что и непосредственное деление числа n на m. В такой ситуации существенную роль может сыграть обнаружение степени десятки, дающей маленький по модулю остаток или недостаток при делении на m, что позволяет разбить все цифры делимого на группы и тем самым действительно облегчить проверку делимости многозначных чисел.Пользуясь тем, что число 103
дает при делении на 37 остаток 1, получите следующий признак делимости на 37: если разбить все цифры числа n на тройки, начиная справа (в последней "тройке" может оказаться менее трех цифр, но тогда ее недостающие цифры будем считать нулями), и сложить эти тройки как трехзначные числа, то полученная сумма будет иметь тот же остаток от деления на 37, что и число n.Придумайте способ, как упростить проверку делимости трехзначного числа на 37.
2.24. Общий признак для 7, 11, 13
Пользуясь описанной в задаче 2.23 идеей разбиения цифр на группы, предложите признаки делимости на 7, 11, 13, сводящиеся к проверке делимости некоторого трехзначного числа на 7, 11, 13 соответственно.2.25. Делимость на 19
Докажите, что число2.26. Делимость на 31
Докажите, что число2.27. Еще о делимости на 13
Докажите, что число2.28. Делимость на 17
Докажите, что числоРешения
2.1.
Число делится на 5 в том и только в том случае, если его последняя цифра равна 0 или 5. Действительно, если последняя цифра числа n равна n0, то само число n имеет вид