Читаем Примени математику полностью

19.95. Проведем прямую, параллельную данному отрезку АВ, и построим треугольник АСВ, стороны АС и ВС которого пересекают прямую в точках D и Е (рис. 179). Тогда, проведя через точку F пересечения прямых АЕ и BD прямую CG, мы разделим отрезок АВ пополам.


Рис. 179


19.96. Используя конструкцию, описанную в решении задачи 19.95, построим два равнобедренных треугольника A1С1B1 и А2С2В2 (рис. 180) и проведем их медианы, на пересечении которых как раз и будет лежать центр окружности.


Рис. 180


19.97. Отложив на данной прямой две точки на расстоянии друг от друга, большем ширины h линейки, приложим двустороннюю линейку так, чтобы оба раза отмеченные точки примыкали к разным сторонам линейки (рис. 181). Проведя четыре соответствующие прямые, получим в пересечении ромб с одной диагональю, лежащей на данной прямой, и с другой диагональю, ей перпендикулярной.


Рис. 181


19.98. Отложим на сторонах угла от его вершины по два отрезка длиной 1 см каждый (см. задачу 9.7 и рис. 10). Соединив четыре полученные точки попарно крест-накрест, мы получим точку биссектрисы (рис. 182).


Рис. 182


19.99. Впишем в данную окружность два прямых угла, которые будут опираться на диаметры (рис. 183). Тогда точка пересечения этих диаметров укажет центр окружности.


Рис. 183


19.100. Построим два прямоугольника с общей стороной, совпадающей с данным отрезком. Тогда, соединив друг с другом точки пересечения их диагоналей, мы найдем середину этого отрезка (рис. 184).


Рис. 184


19.101. Можно сильно приблизить друг к другу вершины исходного прямоугольника, перенеся каждую из них вдоль длинной стороны к ее середине на ширину шоколадки (рис. 185).


Рис. 185


19.102. Проведем какую-либо дугу с центром в данной точке А, чтобы получились две точки В и С пересечения с исходной дугой (рис. 186). Затем найдем точку D, отличную от точки А и равноудаленную от точек В к С. Прямая AD будет искомой.


Рис. 186


19.103. Построим точку С на равном расстоянии от точек А и В и отложим на луче ВС точку В на том же расстоянии от точки С (рис. 187). Тогда угол BAD будет прямым.


Рис. 187


19.104. Положим бумагу на цилиндрический предмет, например на трубу, и, установив одну ножку циркуля на полученной поверхности, проведем на ней циркулем "окружность" (рис. 188). Распрямив затем лист, получим на нем кривую овальной формы.


Рис. 188


19.105. Точки А, В, С, D (первые две точки считаем данными) на рис. 189 лежат на одной прямой, при этом все дуги одинакового радиуса АВ проводятся последовательно с центрами в В, А, Е, F, С, G.


Рис. 189


19.106. По данным концам отрезка А В построим точку С так, как указано в решении задачи 19.105. Затем проведем дугу 2 с центром С и радиусом АС. Наконец, проведем дугу 3 с центром D (рис. 190) и радиусом AD, которая пересечет отрезок АВ в его середине М (если даже отрезок АВ, как таковой, не проведен, точку М можно построить, проведя дополнительно дугу 4 с центром Е).


Рис. 190


19.107. Проведем окружность с центром О и радиусом 1 и, не меняя раствора циркуля, отложим на ней точки А, В, С, D (рис. 191). Тогда расстояние между точками А и С равно , а точка Е пересечения двух дуг с центрами А, D и радиусом удалена от точки О на расстояние


Рис. 191


19.108. Для нахождения центра О данной окружности достаточно провести дугу 1 с центром в некоторой точке А этой окружности (рис. 192), затем еще две дуги 2 и 3 того же радиуса с центрами В и С, далее дугу 4 с центром D и радиусом AD и, наконец, две дуги 5 и 6 с центрами Е и F и радиусом АЕ, которые как раз пересекутся в точке О.


Рис. 192


19.109. Чтобы по данной точке А построить точку В, лежащую на одной прямой с точкой А и вершиной угла, достаточно выбрать точку С и провести последовательно прямые линии 1-7 так, как указано на рис. 193.


Рис. 193


19.110. Пусть надо соединить прямой линией точки А и В, Заметим, что короткой линейкой мы можем продолжать любую прямую по заданному ее участку. Пользуясь этим замечанием, проведем прямые 1, 2 через точку В так, чтобы они прошли близко от точки А. Затем из некоторой точки С выпустим достаточно густой пучок прямых: на рис. 194 это прямые 3-13. Далее проведем прямые 14-17 и найдем точку D, затем аналогично точки Е, F, G, H, которые все будут лежать на прямой АВ и позволят построить эту прямую короткой линейкой.


Рис. 194


19.111. Через некоторую точку данной прямой проведем две прямые 1, 2, а через некоторую точку А проведем четыре прямые 3-6 так, как показано на рис. 195. Выбрав на данной прямой удобную точку В, проведем последовательно прямые 7-12. Тогда точки пересечения прямых 9, 10 и прямых 11, 12 будут лежать на продолжении данной прямой за кляксу.


Рис. 195


© Издательство "Наука". Главная редакция физико-математической литературы, 1989

Научно-популярное издание

Сергеев Игорь Николаевич

Олеxник Слав Николаевич

Гашков Сергей Борисович

Примени математику

Перейти на страницу:

Похожие книги

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное