Читаем Примени математику полностью

19.74. Через точку А, расположенную от вершины В угла вдвое дальше, чем данная точка С (рис. 166), проведем прямую, параллельную стороне угла. Она пересечет другую сторону угла в точке D, через которую и проходит искомая прямая.


Рис. 166


19.75. Диаметром наименьшего круга, содержащего указанный треугольник, является наибольшая сторона этого тупоугольного треугольника, равная 4.

19.76. Крепче держится треугольный гвоздь, поскольку соприкасается с окружающей его древесиной по наибольшей поверхности: при равных площадях сечения периметр значения будет наибольшим у треугольника и наименьшим круга (отсюда, кстати, следует, что круглый гвоздь держится слабее любых других гвоздей).

19.77. Частей не могло быть 66, но могло быть 67, так при каждом измельчении листа число кусочков увеличивалось на 3, а вначале это число было равно 1.

19.78. На рис. 167 показано, как разрезать квадрат на 4, 6 или 8 квадратов. Деля любую из полученных частей на 4 квадрата, мы будем увеличивать их число на 3. Таким образом, из исходного квадрата можно получить разрезанием как 4 квадрата, так и любое их число, большее 5.


Рис. 167


19.79. Число разломов не зависит от порядка, в котором они производятся. Это число будет на единицу меньше, чем количество квадратных долек, составляющих плитку шоколада, поскольку после первого разлома образуются два куска шоколада, после второго-три, после третьего-четыре и т. д.

19.80. Достаточно двух цветов. Это доказывается индукцией по числу прямых линий, делящих страну на области.

19.81. Сложив лист пополам, разрежем его так, как показано на рис. 168.


Рис. 168


19.82. Разобьем имеющиеся треугольники на пары и сложим из них одинаковые параллелограммы, а затем замостим всю плоскость такими параллелограммами (рис. 169).


Рис. 169


19.83. Для паркета годятся любые одинаковые четырехугольники: сначала замостим всю плоскость параллелограммами, построенными на диагоналях данного четырехугольника как на сторонах, а затем в каждый параллелограмм поместим по данному четырехугольнику (на рис. 170 они заштрихованы), а остальные части плоскости автоматически окажутся такими же, но повернутыми четырехугольниками.


Рис. 170


19.84. Годится любая прямая, проходящая через точку пересечения диагоналей прямоугольника.

19.85. Достаточно провести разрез через центры симметрии прямоугольника и параллелограмма.

19.86. Достаточно, например, разрезать треугольник на три части, на которые его разбивают перпендикуляры к сторонам, опущенные из центра вписанной окружности (рис. 171).


Рис. 171


19.87. Пусть требуется провести разрез через вершину А четырехугольника ABCD. Через середину О диагонали BD проведем прямую, параллельную другой диагонали АС, до пересечения со стороной ВС или CD в точке Е (рис. 172). Тогда прямая АЕ делит четырехугольник ABCD на равновеликие части.


Рис. 172


19.88. Приставим один из меньших квадратов к другому и отрежем от них два исходных прямоугольных треугольника, переложив их так, как показано на рис. 173.


Рис. 173


19.89. Если мысленно разрезать данный ящик на два ящика размером 20*15*9 и 20*15*5, то в каждом из них одно измерение будет делиться на 10, другое на 5 и еще одно на 3. Поэтому оба ящика, а значит, и исходный можно заполнить коробками.

19.90. Можно разместить 68 кругов так, как изображено на рис. 174. При этом останется неиспользованной полоска шириной


(последняя величина положительная, поскольку


Рис. 174


19.91. Если бы это было возможно, то в круге радиуса 550 м можно было бы разместить без наложений 125 кружков радиуса 50 м каждый с центрами в скважинах. Но тогда общая площадь этих кружков, равная 125*2500*π м2 была бы меньше площади объемлющего круга, равной 550*550π м2, что не соответствует истине. Значит, указанное размещение скважин невозможно.

19.92. Если данная точка С не принадлежит окружности, то найдем точки D и Е пересечения прямых АС и ВС с окружностью, а затем точку F пересечения прямых АЕ и BD (рис. 175). Тогда прямая CF представляет собой искомый перпендикуляр.


Рис. 175


Если же точка С лежит на окружности, то проведем какой-либо перпендикуляр к диаметру АВ, пересекающий окружность в точках К и L (рис. 176), а затем найдем точки М и N пересечения прямой CL с диаметром АВ и прямой КМ с окружностью соответственно. Тогда прямая CN будет также перпендикулярна диаметру.


Рис. 176


19.93. Проведя на одинаковых расстояниях (равных ширине h линейки) от сторон данного угла параллельные прямые (рис. 177), мы получим ромб, диагональ которого делит угол пополам.


Рис. 177


19.94. Проведем по одинаковому количеству прямых, параллельных обеим сторонам угла, на расстояниях, кратных ширине h линейки. Соответствующие точки пересечения этих прямых лежат на биссектрисе угла (рис. 178).


Рис. 178


Перейти на страницу:

Похожие книги

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное