Читаем Примени математику полностью

19.15. Попробовав не более 9 ключей, вы установите, который из 10 ключей подходит к первой двери. Затем, попробовав не более 8 ключей, вы подберете ключ ко второй двери и т. д. Всего вам понадобится не более 9 + 8 + ... + 1 = 45 попыток.

19.16. Достаточно взять 3 носка, так как 2 из них обязательно будут одинакового цвета.

19.17. Для того чтобы наверняка обеспечить пару одноцветных перчаток, нужно взять минимум 11 перчаток: 6 из них обязательно будут одинакового цвета, а среди них, в свою очередь, 2 обязательно придутся на разные руки.

19.18. Можно надеть сразу обе пары перчаток и работать с первым реактивом, затем снять одну пару перчаток и работать со вторым реактивом, наконец, снова надеть снятую пару, вывернув ее наизнанку, и работать с последним реактивом. (В решении, конечно, содержится элемент шутки, так как вряд ли можно снимать, надевать и вывертывать "грязные" перчатки, не испачкав их "чистую" сторону.)

19.19. Достаточно отложить на веревке 3 одинаковых расстояния, потом еще 4 и еще 5 таких расстояний, получив в итоге на веревке 4 отметины. Если теперь соединить начальную и конечную отметины, а оставшиеся 2 отметины оттянуть так, чтобы образовался треугольник, то этот треугольник обязательно будет прямоугольным.

19.20. Один из возможных способов завязывания узла показан на рис. 148.


Рис. 148


19.21. Один из возможных способов прострочить первую эмблему показан на рис. 149. Что же касается второй эмблемы, то ее прострочить с соблюдением условий задачи невозможно.


Рис. 149


19.22. Каркас куба содержит 12 ребер, но, чтобы обойти весь этот каркас не прерывая движения, необходимо дополнительно пройти как минимум по трем ребрам. Поэтому для изготовления каркаса указанного куба меньше 1,5 м проволоки будет недостаточно.

19.23. Достаточно разрезать 3 яблока пополам и 2 яблока на 3 части каждое. Получится 6 половинок и 6 третей, которые можно поровну распределить на 6 человек.

19.24. Двумя прямыми разрезами квадратный или круглый торт делим на четыре равные части, а третьим разрезом отсекаем от каких-то двух противоположных частей по одной трети (на рис. 150 цифрами 1, 2, 3 соответственно обозначены части, предназначенные разным людям, если их трое).


Рис. 150


19.25. Любой торт, однородный по составу, можно разделить на восемь равных частей, если двумя вертикальными разрезами разделить его на 4 равные части, а затем горизонтальным разрезом разделить каждую часть пополам (рис. 151).


Рис. 151


19.26. Достаточно перегнуть кусок материи пополам, затем одну из половинок перегнуть еще раз пополам и, наконец, ту четвертинку, которая ближе к середине, снова перегнуть пополам. Последняя линия сгиба разделит длину куска в отношении 3:5.

19.27. После стирки от 1 м (длины) материи останется поэтому нужно купить 64 м материи.

19.28. Оставшийся после стирки кусок составляет первоначального объема. Поэтому его хватит еще на 2 стирки.

19.29. Оба языка знают 50% жителей, поскольку из 80% знающих английских язык 30% не знают французского языка (предполагается, что каждый житель знает хотя бы один из двух названных языков).

19.30. Новые цены составляют 4/5 старых; следовательно, товаров на отведенную сумму можно купить в 5/4 раза, т. е. на 25%, больше.

19.31. Так как для искомой суммы х рублей справедливо неравенство х + 0,02х ≤ 100, то а значит, имея 100 рублей, можно перевести максимум 98 рублей 3 копейки.

19.32. Выгоднее купить большой арбуз, так как его объем в раза (т. е. почти в два, а не в полтора) больше, чем объем другого арбуза.

19.33. Выгоднее покупать крупные мандарины, поскольку при увеличении радиуса мандарина площадь его поверхности (пропорциональная квадрату радиуса) увеличивается не так значительно, как его объем (пропорциональный кубу радиуса).

19.34. Площадь поверхности у одного килограмма крупной картошки меньше, чем у того же количества мелкой. Поэтому крупную картошку чистить выгоднее: и быстрее и экономнее (меньше отходов).

19.35. Было отпито 7/8 исходного количества сока, так как из соображений подобия объем оставшейся части сока составляет прежнего.

19.36. Широкая кружка более вместительна, так как площадь ее основания в 1,52 = 2,25 раза больше площади основания другой кружки, а объем соответственно больше в 2,25/2 = 1,125 раза.

19.37. Будем наклонять кружку в точности до тех пор, пока не появится краешек дна (рис. 152). Тогда в кружке останется ровно полкружки молока.


Рис. 152


19.38. Во-первых, из полной кюветы можно отлить ровно половину (рис. 153).


Рис. 153


Во-вторых, можно отлить из кюветы столько воды, чтобы осталась ровно шестая часть кюветы (рис. 154).


Рис. 154


В-третьих, при наличии какого-либо сосуда для временного хранения воды можно комбинировать также и другие порции воды, кратные шестой части кюветы:


19.39. Измеряем диаметр d основания (внутренний, с учетом толщины стекла) и высоту h1 столба жидкости, а

Перейти на страницу:

Похожие книги

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное