2. Прежде чем рассматривать другие решения, установим следующий факт весьма общего свойства. Пусть для всего дальнейшего ключевым является множество К — это множество всех чисел х, для которых утверждение х Є Аx недоказуемо машиной, или, что то же самое, множество таких чисел х, для которых число х*х не может быть напечатано машиной. Далее, множество А75 как раз и есть такое множество К, потому что утверждение, что х принадлежит множеству Аn, равносильно утверждению, что х не принадлежит множеству A25, что в свою очередь равносильно утверждению, что число х*х не принадлежит множеству А8, где А8 — это множество тех чисел, которые машина может напечатать. Итак, А75 = К. Но при этом и Аn = К, потому что утверждение, что некое число х принадлежит множеству An, равносильно утверждению, что число х*х принадлежит множеству А8 (согласно свойству 3, поскольку 73 = 3x24+1), что в свою очередь равносильно утверждению, что число х+х не принадлежит множеству А8 (согласно свойству 2). Таким образом, А75 — это множество всех тех чисел х, для которых число х*х не принадлежит множеству А8 или, что то же самое, множество всех чисел х, для которых утверждение х Є Аx не может быть доказано машиной. Следовательно, А73 — это то же самое множество чисел, что и A75 поскольку оба они тождественны множеству К. Более того, для любого заданного числа n, для которого Аn = К, утверждение n Є А* должно быть истинным, но недоказуемым с помощью машины. Это можно показать буквально с помощью тех же самых рассуждений, что и в рассмотренном нами частном случае n = 75 (в еще более общей форме эти рассуждения приведены в следующей главе). Тем самым мы получаем, что утверждение 73 Є А73 — это еще один пример истинного утверждения, кодовый номер которого машина напечатать не может.
3. Для любого числа n множество А9n должно совпадать с множеством n. В самом деле, множество А9n есть дополнение множества A3n, а множество А3n в свою очередь есть дополнение множества n; следовательно, множество А9n совпадает с Аn, Это означает, что множество A675 совпадает с множеством A75, и, стало быть, утверждение 675 Є А675 — это есть еще одно решение задачи. Аналогично утверждение 2175 Є A2175также является решением. Таким образом, мы получаем, что существует бесконечно много истинных утверждений, которые машина Фергюссона доказать не может: например, для любого n, которое равно произведению 75 на некоторое кратное числа 9 или произведению 73 на произвольное кратное числа 9, утверждение n Є А, является истинным, но недоказуемым посредством этой машины.
Доказуемость и истина
Крупной вехой в истории математической логики стал 1931 г. Именно в этом году Гёдель опубликовал знаменитую теорему о неполноте. Свою эпохальную работу[8] он начинает следующими словами:
«Развитие математики в направлении все большей точности привело к формализации целых ее областей, в связи с чем стало возможно проводить доказательства, пользуясь небольшим числом чисто механических правил. В настоящий момент наиболее исчерпывающими системами являются, с одной стороны, система аксиом, предложенная Уайтхедом и Расселом в работе «Princlpia Mathematica», а с другой — система Цермело—Френкеля в аксиоматической теории множеств. Обе эти системы настолько обширны, что в них оказывается возможным формализовать все методы доказательства, используемые сегодня в математике, — иначе говоря, все эти методы могут быть сведены к нескольким аксиомам и правилам вывода. Поэтому, казалось бы, разумно предположить, что указанных аксиом и правил вполне хватит для разрешения всех математических проблем, которые могут быть сформулированы в пределах данной системы. Ниже будет показано, что дело обстоит не так. В обеих упомянутых системах имеются сравнительно простые задачи из теории обычных целых чисел, которые не могут быть решены на базе этих аксиом».[9]
Далее Гёдель объясняет, что такая ситуация обусловлена отнюдь не какими-то специфическими особенностями двух упомянутых систем, но имеет место для обширного класса математических систем.
Что имеется в виду под «обширным классом» математических систем? Это выражение интерпретировалось по-разному, и соответственно по-разному обобщалась теорема Гёделя. Как ни странно, одно из самых простых и доступных для неспециалиста объяснений остается наименее известным. Это тем более удивительно, что на такое объяснение указывал и сам Гёдель во вводной части своей первой работы. К нему мы сейчас и обратимся.