Рассмотрим теперь некоторые приложения. Для того чтобы найти некое число X,
порождающее повторение X, примем 5 в качестве М; тогда сразу получаем решение (а точнее, одно из решений) — число 53253. Для того чтобы найти число X, порождающее обращение самого себя, положим M = 4; тогда X есть число 43243. Для того чтобы найти число X, которое порождало бы ассоциат обращения X, выберем в качестве M число 34; отсюда возможное решение — число 3432343.Для решения первой задачи Мак-Каллоха (найти число X,
которое порождает повторение обращения ассоциата X) выберем в качестве M число 543 (5 — для получения повторения, 4 — для получения обращения и 3 — для получения ассоциата); решением в данном случае является число 543325433. (Читатель может легко удостовериться непосредственно, что число 543325433 действительно порождает повторение обращения ассоциата числа 543325433.)Для решения второй задачи Мак-Каллоха (найти число X,
которое порождает ассоциат повторения обращения X) возьмем в качестве M число 354; в результате получим решение — число 354323543.Да, действительно, принцип Крейга великолепно работает в этих ситуациях!
21, 22, 23, 24.
Задачи 21, 22 и 23 являются частными случаями задачи 24, поэтому мы начнем прямо с последней из них.Пусть нам дано операционное число M
и произвольное число А, причем мы хотим найти некое число X, которое порождает М(АХ). Вся штука теперь состоит в том, чтобы найти такое число Y, которое не порождает MY, однако порождает AMY. Возьмем в качестве Y число 32АМЗ. Поскольку Y порождает AMY, тогда MY в соответствии с утверждением 1 должно порождать M(AMY). Значит, если принять за X величину MY, то X будет порождать М(АХ). Но поскольку мы выбрали в качестве Y число 32АМЗ, то число X в (данном случае будет равно М32АМЗ. Итак, искомое решение — число вида М32АМЗ.Попробуем применить этот результат к решению задачи 21. Прежде всего отметим, что число 7X
7X — это просто повторение 7X, так что мы ищем некое число X, которое порождает повторение 7X — или повторение АХ, если считать А равным 7. Итак, А — это 7, а за M, очевидно, можно принять число 5 (поскольку 5 представляет собой операцию повторения); поэтому решением будет число 532753. (Читатель легко может убедиться сам, что число 532753 действительно порождает повторение числа 7532753.) Для задачи 22 в качестве А возьмем 9, а в качестве M примем 4, тогда решение — число 432943. Для задачи 23 в качестве А выберем 89, а в качестве M — число 3; решением будет 3328933.
25.
Да, для любого числа А существует некое число X, которое порождает X⃖A, а именно 432A⃖443. (В данной конкретной задаче, для которой А = 67, имеем A⃖ = 76, так что решением будет число 4327643.)
26.
При рассмотрении наиболее общего случая самое главное — понять, что X⃖A — это обращение A⃖Х, и по этому М(X⃖А) = М4(A⃖Х). Согласно второму принципу Крейга, числом X, порождающим М4(A⃖X), является число М432AМ43 — оно и будет решением дайной задачи. В частном случае, если вместо M взять 5, а вместо А — 67, числом X, порождающим повторение X⃖67, будет число 543276543 (в чем читатель может легко убедиться сам).11. Законы Фергюссона
А сейчас мы перейдем к рассказу о еще более интересных событиях, связанных с машинами Мак-Каллоха. Недели две спустя Мак-Каллох получил от Крейга письмо следующего содержания: