Читаем Принцесса или тигр? полностью

2. — Вы меня просто заинтриговали, — заявил Крейг, когда Фергюссон показал им решение. — Я вижу, что ваше решение правильно, но как вам удалось его найти? Вы просто случайно наткнулись на эти числа X и Y или действовали по заранее намеченному плану? Мне, например, это кажется прямо каким-то фокусом.

— Вот именно, — вставил Мак-Каллох. — Так, знаете, фокусник в цирке вытаскивает кролика из шляпы!

— Ага, — засмеялся Фергюссон, явно наслаждаясь произведенным эффектом. — Только не одного, а двух кроликов, и при том они еще некоторым образом влияют друг на друга. Это точно, — сказал Крейг. — Но все же мне бы хотелось знать, как вы догадались, каких именно кроликов надо тащить?

— Прекрасный, ну просто замечательный вопрос! — сияя, воскликнул Фергюссон. — А ну-ка — вот вам еще задачка: найти такие числа X и Y, чтобы число X порождало повторение числа Y, а число Y порождало обращение ассоциата X.

— С меня хватит! — воскликнул Мак-Каллох.

— Минуточку, минуточку, — перебил их Крейг. — Я, кажется, что-то начинаю понимать. Не хотите ли вы сказать, Фергюссон, что для любых двух операций, которые может выполнять машина, то есть для любых двух заданных операционных чисел M и N, должны существовать некие числа X и Y, характеризующиеся тем, что X порождает M(Y), а Y порождает N(X)?

— Вот именно! — воскликнул Фергюссон. — И поэтому мы можем найти, например, такие числа X и Y, для которых X порождает двойной ассоциат Y, а Y порождает повторение обращения X или любые другие комбинации, какие вы захотите.

— Вот так штука! — изумился Мак-Каллох. — Ведь все это время я пытался придумать машину как раз с таким свойством, а она у меня, оказывается, уже есть!

— Безусловно есть, — подтвердил Фергюссон.

— А как вы докажете это свойство? — спросил Мак-Каллох.

— Я бы хотел начать доказывать его постепенно, — ответил Фергюссон. — Собственно говоря, суть дела заключается в ваших правилах 1 и 2. Поэтому сначала позвольте сделать несколько замечаний относительно вашей первой машины — той, в которой используются только эти два правила. Начнем со следующей простой задачи: можно ли, используя правила 1 и 2, найти два различных числа X и Y, таких, чтобы число X порождало Y, а число Y в свою очередь порождало X?

Крейг и Мак-Каллох тут же занялись этой задачей.

— Ну, конечно, — рассмеялся вдруг Крейг. — Это же очевидно вытекает из того, что совсем недавно показы вал мне Мак-Каллох.

А вы можете найти эти числа?

— Теперь, — сказал Фергюссон, — для любого числа А существуют такие числа X и Y, что X порождает Y, а число Y порождает АХ. Если число А нам задано, то можете ли вы найти числа X и Y? Например, можете ли вы найти такие X и Y, чтобы X порождало Y, а Y порождало 7X?

— Мы все еще пользуемся только правилами 1 и 2 или уже можно применять правила 3 и 4? — спросил Крейг.

— Вам понадобятся только правила 1 и 2, — ответил Фергюссон.

— Я уже нашел решение! — тут же заявил Крейг.


4. — Интересно, — сказал Мак-Каллох, просмотрев решение Крейга. — А у меня решение другое.

Действительно, в этой задаче существует и второе решение. Можете ли вы его найти?


5. — Ну, а теперь, — сказал Фергюссон, — мы добрались до действительно важного свойства. Так, из одних только правил 1 и 2 следует, что для любых чисел А и В существуют такие числа X и Y, при которых X порождает AY, а Y порождает BX. Например, существуют такие X и Y, что X порождает 7Y, а Y порождает 8X. Не можете ли вы найти эти числа?


6. — Из последней задачи, — сказал Фергюссон, — со всей очевидностью следует (правда, из второго принципа Крейга это получается еще более просто), что для любых операционных чисел M и N должны существовать такие числа X и Y, при которых X порождает M(Y), а Y порождает N(X). Причем это оказывается справедливым не только для данной машины, но и для любой машины, в программу работы которой включены правила 1 и 2. С помощью вашей теперешней машины можно, например, найти такие X и Y, при которых число X порождает обращение числа Y, а число Y порождает ассоциат числа X. Сумеете ли вы их найти?


7. — Это страшно интересно, — сказал Фергюссону Мак-Каллох, когда они с Крейгом решили последнюю задачу. — Но у меня возник вот какой вопрос: подчиняется ли моя машина «двойному» аналогу второго принципа Крейга? Иначе говоря, если заданы два операционных числа M и N, а также два произвольных числа А и В, то обязательно ли существуют такие числа X и Y, при которых X порождает M(AY), а Y порождает N(BX)?

— Ну, конечно, — подтвердил Фергюссон. — Например, существуют такие числа X и Y, при которых число X порождает повторение 7Y, а число Y порождает обращение 89X.

Не могли бы вы найти эти числа?


8. — Я подумал еще вот о чем, — сказал Крейг. — Если имеется некоторое операционное число M и произвольное число В, то обязательно ли должны существовать такие числа X и Y, при которых X порождает М(Y), а Y порождает BX? Например, существуют ли такие X и Y, при которых число X порождает ассоциат Y, а число Y порождает число 78X?

А как думаете вы?


Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии