А теперь рассмотрим машину, которая подчиняется выведенным Мак-Каллохом правилам 1, 3 и 4. Числом, порождающим обращение самого себя, является, например, число 452452 (оно порождает обращение повторения числа 452, или, другими словами, обращение числа 452452). (Сравните его с предыдущим решением 43243.) Числом, которое порождает повторение обращения самого себя, является число 54525452. (Сравните его с прежним решением 5432543.)
Далее, рассмотрим машину, которая подчиняется правилам 1, 2 и 4. Мы знаем, что число 33233 порождает свой собственный ассоциат точно так же, как и число 352352. Что касается числа
Наконец, рассмотрим некоторую произвольную машину, которая подчиняется по меньшей мере двум из правил Мак-Каллоха, а именно: правилам 1 и 4. Для заданного операционного числа
Что же касается теоремы 3, то ее можно доказать так же, как это делалось в предыдущей главе. [Например, если даны операционные числа
13. Ключ
Дело, по которому Крейг поехал в Норвегию, заняло у него гораздо меньше времени, чем он предполагал, и ровно через три недели инспектор возвратился домой. Дома его ждала записка от Мак-Каллоха:
Дорогой Крейг!
Если ты случайно вернешься из Норвегии до 12 мая (это пятница), то приходи ко мне в этот день обедать. Фергюссона я уже пригласил.
С приветом
Норман Мак-Каллох
— Вот и отлично! — сказал себе Крейг. — Я вернулся как раз вовремя!
Крейг приехал к Мак-Каллоху минут через пятнадцать после того, как там появился Фергюссон.
— С благополучным возвращением! — приветствовал приятеля Мак-Каллох.
— Пока вас не было, — сразу же сообщил Фергюссон, — Мак-Каллох изобрел новую числовую машину!
— Ну да? — удивился Крейг.
— Я занимался этим не один, — сказал Мак-Каллох, — Фергюссон тоже приложил к ней руку. А вообще-то машина интересная; на этот раз в нее введены следующие четыре правила:
правило MI:
для любого числаправил о МII:
если числоправило MIII:
если числоправило MIV:
если число— Эта машина, — продолжал Мак-Каллох, — обладает всеми прекрасными свойствами моей последней машины — она подчиняется двум твоим принципам и, кроме того, закону двойных аналогов Фергюссона.
Крейг довольно долго и внимательно изучал эти правила. Наконец он сказал:
— Что-то мне никак не удается сдвинуться с места. Не могу даже найти число, которое порождает само себя. Есть тут такие числа?
— Есть, — ответил Мак-Каллох, — но с помощью этой машины найти их гораздо труднее, чем в предыдущем случае. Честно говоря, я тоже не смог решить эту задачу. А вот Фергюссон с ней справился. Более того, теперь мы знаем, что такое короткое число, порождающее само себя, состоит из десяти цифр.
Крейг опять глубоко задумался.
— А что, первых двух правил недостаточно для нахождения такого числа? — поинтересовался он наконец.
— Нет, конечно! — ответил Мак-Каллох. — Для получения этого числа нам необходимы все четыре правила.