Это значит, что стихийная деловая активность свободного рынка, описанная выше на примере обменов долинами, приводит к тому же результату, что и решение задачи оптимизации, как будто поставленной в интересах общества в целом! Это и есть то, что мы имели в виду в главе 5, говоря, что свободный рынок в сущности решает ту же задачу, что и действительно оптимальное планирование. Задолго до возникновения современных методов математической экономики это понял основоположник экономической науки Адам Смит. Он пришел – интуитивным путем – к только что высказанному открытию, выражающему, как говорили его современники, "оптимизм" Адама Смита: казалось, что "невидимая рука" рынка невольно направляет к общему благу "эгоистическую" деятельность отдельных производителей, каждый из которых думает только о собственной выгоде. Здесь нет никакого парадокса: эта их деятельность порождает конкуренцию, мобилизующую энергию личного интереса. Иное дело, как этот личный интерес отражается на личности этих производителей, и какое общество может отсюда произойти. Адам Смит, бывший не только экономистом, но и философом, понимал это гораздо лучше его последователей, "идеологов" свободного рынка. Он утверждал лишь, что свободный рынок обеспечивает наилучшую производительность общественного труда, создавая "богатство наций". В отношении распределения и использования этого богатства он вовсе не был "оптимистом".
Возникает вопрос, почему бы, в самом деле, не заменить свободный рынок (к тому же – все менее свободный в наши дни) прямым оптимальным планированием? К сожалению, действительно оптимальное планирование в масштабах больших хозяйственных организмов представляет трудности, далеко превосходившие понимание бравшихся за него дилетантов. Эти трудности связаны и с навыками мышления и поведения людей, которые очень трудно планировать. Приходится признать, что в обозримом будущем "оптимизировать" народное хозяйство будет по-прежнему рынок.
Это вовсе не значит, что методы математической оптимизации не нужны. Напротив, они дают ответы на очень важные, хотя и частные вопросы – столь важные, что без помощи этих методов человечество вряд ли сможет выжить в техническом мире, созданном им самим.
Нам осталось определить точную форму кривой, разделяющей области конкурентов К и L. Эта кривая оказывается
Рис.6
Для тех, кто не страшится простейших выкладок аналитической геометрии, приведем доказательство, что мы действительно получили гиперболу.
Уравнение (γ) содержит координаты двух точек, лежащих на искомой кривой – p(П1, П2) и p'(П1', П2') (тогда как Q1 и Q2 – постоянные, задающие производительность "долин"), и при любом выборе
этих точек должно выполняться равенство . Фиксируем точку p' (то есть ее координаты П1', П2'), а точку p заставим пробегать граничную кривую. Тогда координаты П1,
П2 точки p ("текущие координаты" на кривой, как говорят в аналитической геометрии) удовлетворяют уравнению , где все остальные буквы надо считать постоянными. Перепишем это уравнение в виде
и обозначим правую часть через а, П1 через x, П2 через y. Тогда имеем
или
Q2x - Q1y = axy
Чтобы упростить это уравнение, сдвинем координатные оси x,y на расстояния x0, y0:
x = x0 + x', y = y0 + y',
где x , y – координаты точки p в новых осях. Имеем
Q2 x' - Q1 y' + Q2 x0 - Q1 y0 = a(x' + x0)(y' + y0),
ax'y' + x'(ay0 - Q2) + y'(ax0 - Q1) = Q2x0 - Q1y0 - ax0y0.
Подберем сдвиги x0 ,y0 так, чтобы скобки слева обратились в нуль, подставим эти числа в правую часть и обозначим полученное число через ac. Сокращая на а, получаем уравнение гиперболы:
x'y' = c (или y' = c / x' ).
Это и есть искомая кривая, делящая правый верхний угол на области L,K. Гипербола не может пересекать границы областей А и В, так как по обе стороны ее лежат долины разного назначения, а в областях А и В – только одного (сельское хозяйство в В, гидростроительство в А ).Следовательно, она проходит через угловую точку прямоугольника С.
Глава 10. Долговременные ориентиры в экономике и экологии