«Красота фракталов» (Х.-О. Пайтген, П. X. Рихтер, Ферлаг, 1986) стала первой книгой, где множество представлено в великолепных техниколоровских цветах. В ней содержится увлекательное (местами просто поразительное) эссе доктора Мандельброта о происхождении и открытии (или, вернее сказать, — изобретении?) множества. Более поздние достижения ученый описывает в «Науке фрактальных изображений» (Шпрингер ферлаг, 1988). Обе указанные книги предназначены для профессионалов.
Гораздо доступнее для неподготовленного читателя, желающего разобраться в вопросе, книга А. К. Дьюдни «Вселенная в кресле» (У. X. Фримен, 1988). В ней содержится статья 1985 года из «Сайентифик америкен» и коды программ для персонального компьютера, а также информация о них. Мне очень приглянулась программа «Mand FXP». Я активно пользовался ею на компьютере «Амига 2000». Работая над телевизионным документальным фильмом «Бог, Вселенная и все остальное» для четвертого британского телеканала, я получил редкую возможность продемонстрировать Стивену Хокинсу несколько великолепных «черных дыр». Они получились при расширении множества до размеров, сравнимых с расстоянием от Земли до Марса.
Думаю, можно не упоминать, что существуют журналы для фанатов множества Мандельброта. В них публикуют советы, как заставить программы работать быстрее, а также заметки исследователей далеких регионов множества. Иногда проскакивают даже образчики нового жанрового направления, так называемого фрактал-фикшн.
Лучше всего оценить красоту множества Мандельброта помогают специальные видеозаписи, обычно сопровождаемые музыкой. Самая знаменитая из них — «Ничего, кроме зумов» («Nothing but zooms») производства «Арт матрикс». Также большое наслаждение доставил мне «Фрактальный балет» («А Fractal Ballet») от «Фрактал стэфф компани».
Строго говоря, «Крайний Запад» множества Мандельброта точно равен -2, а не -1,99999 и до бесконечности, как утверждается в главе 18. Кого-нибудь интересует, в чем разница?
Не знаю, встречаются ли в реальной жизни случаи «мандельмании», но, думаю, после выхода книги сообщения о них могут появиться. Заранее снимаю с себя всякую ответственность.
ПРИЛОЖЕНИЕ: ЦВЕТА БЕСКОНЕЧНОСТИ
Сегодня все знакомы с графиками. Особенно привычен график, на кагором по горизонтали откладывается время, а по вертикали — неуклонно растущая стоимость жизни. Мысль, что каждая точка на плоскости описывается двумя числами, обычно называемыми