Теперь рассмотрим случай, когда первоначальное
При первом возведении в квадрат
1,000000000000000000002
затем
1,000000000000000000004
1,000000000000000000008
1,000000000000000000016
1,000000000000000000032
И так далее — насколько хватит бумаги для распечатки. Для любых практических целей подобные величины округляют до 1. Наша точка не двинулась заметно ни вперед, ни назад. Она все равно остается в кружке с радиусом 1.
Но нули медленно исчезают, и цифры после запятой неуклонно маршируют влево. Неожиданно что-то появляется на месте третьей, второй, первой цифры после запятой. После небольшого числа операций числа начинают взрываться, как показывает этот пример:
1,001 1,002 1,004 1,008 1,016 1,032
1,066 1,136 1,292 1,668 2,783 7,745
59,987 3598,467 12948970
167675700000000
28115140000000000000000000000
И до бесконечности.
Справа может быть миллион, миллиард нулей, но результат не изменится. Постепенно цифры доберутся до запятой, и тогда
Теперь рассмотрим другой случай. Допустим,
0,99999999999999999999.
Как и раньше, долгое время, пока мы будем крутиться по спирали, все останется на своих местах. Но числа в дальнем правом конце будут постепенно уменьшаться. После нескольких тысяч или миллионов итераций — катастрофа! —
Проверьте это на компьютере. Он управляется только с двенадцатизначными цифрами? Не имеет значения. Вы получите тот же ответ. Честное слово.
Результаты наших действий, выработанного алгоритма, можно суммировать тремя законами. Некоторым они покажутся слишком тривиальными. Но не бывает тривиальных математических истин. Через пару шагов эти законы уведут нас во вселенную, поражающую удивительной красотой. Вот три закона «квадратичной» программы:
1. Если исходное
2. Если исходное
3. Если исходное
Поэтому наш круг с радиусом 1 фактически представляет собой карту — или, если хотите, ограду, забор, делящий плоскость на две зоны. За пределами ограды числа, повинующиеся квадратичному закону, имеют свободу движения к бесконечности; числа, находящиеся внутри, — пленники, запертые и обреченные на полное изничтожение.
Тут кто-нибудь воскликнет: «Вы говорили только о расстоянии до точки старта. Но чтобы определить положение точки, нужно знать направление радиуса, вектор. Что скажете?»
Совершенно верно. К счастью, при делении
Множество «К» лежит внутри карты. Все его точки располагаются на окружности с радиусом 1. Она представляет собой непрерывную линию, не имеющую толщины. Если исследовать линию с помощью самого мощного микроскопа, она всегда будет выглядеть одинаково. Вы можете увеличить множество «К» до размеров Вселенной, но не увидите ничего, кроме линии с нулевой толщиной. Однако в ней нет ни одной дырочки; это абсолютно непроницаемый барьер, на веки вечные отделяющий все
Теперь мы наконец готовы рассмотреть множество Мандельброта, где все идеи, подсказанные здравым смыслом, переворачиваются вверх тормашками. Пристегните ремни.
В семидесятые годы двадцатого века французский математик Бенуа Мандельброт, сотрудничавший с Гарвардским университетом и компанией IBM, приступил к исследованию уравнения, впоследствии сделавшего его знаменитым. В динамической форме оно записывается так:
Единственное различие между этой формулой и той, что мы использовали для описания множества «К», это показатель
Казалось бы, изменение крошечное. Невозможно представить, что за счет него будет сотворена целая вселенная. Мандельброт получил первые приближенные данные только к весне 1980 года, когда на компьютерных распечатках начали появляться смутные закономерности. Он услышал ту китсовскую песню: