Законы Ньютона предсказывают, что движение шаров, сделанных из материи, будет идентично движению шаров из антиматерии: миллиарды атомов ведут себя так, как будут вести себя и антиатомы. Однако именно внутри отдельных атомов заключается биполярная природа материи, и именно так правят квантовые законы. Если соединить квантовые законы с теорией относительности Эйнштейна, становится ясно: одной формы материи недостаточно. Акт созидания во время Большого взрыва должен был привести к двум уравновешенным вариантам.
Атомы часто описывают как миниатюрные солнечные системы, а электроны – как планеты, которые кружатся вокруг ядра-солнца: нечто маленькое вращается вокруг чего-то большого в центре. Однако с тех пор, как была предложена эта картина, начались споры.
Земле требуется год для того, чтобы обойти вокруг Солнца, и она вращается так уже свыше четырех миллиардов лет. Сравните это с электроном в атоме водорода, который очевидно обходит находящийся в центре протон примерно за одну сотую скорости света и каждую секунду совершает около триллиона вращений. Можно выразить это и по-другому: за одну миллионную долю секунды электрон оборачивается вокруг находящегося в центре протона большее количество раз, чем Земля совершила оборотов вокруг Солнца за всю историю своего существования.
Эти идеи начали появляться в начале ХХ столетия, и существовала теория, что электрон может эмитировать такое электромагнитное излучение, что оно сразу же будет направлено в ядро в виде вспышки света. Но как тогда атомам выжить? Как они вообще смогли бы существовать?
Ответ дала квантовая теория. Когда речь идет о расстояниях, меньших миллионной доли миллиметра (это масштабы атомов), не следует руководствоваться опытом жизни в реальном мире. Он не может подсказать нам, что происходит.
В 1900 году Макс Планк показал, что световые волны эмитируются в микроскопических «квантах» энергии, известных как фотоны. В 1905 году Эйнштейн показал, что свет в них остается, путешествуя в пространстве. Это послужило началом квантовой теории, идеи о том, что у частиц могут быть обманчивые и переменные свойства, они не тут и не там, а «наиболее вероятно, здесь, но может, и там». В квантовой механике определенность заменяется вероятностью, она то увеличивается, то уменьшается. Успехом было объяснение того, как выживают атомы.
Квантовые волны можно представить в виде волн, накатывающих на кусок веревки. Представьте веревку, свернутую в лассо, на многослойной петле представьте цифры, как на часах. Если самая большая волна наблюдается в двенадцать, а спадает в шесть часов, то следующий пик получается в двенадцать. Однако если самая большая волна накатывает в двенадцать, а спад наблюдается в пять, то следующий пик будет в десять, и двенадцать уже не соответствует ритму волны. В 1912 году датский физик Нильс Бор понял, что эти волны электронов, циркулирующие в атомах, должны также идеально подходить каждой петле. Электроны не могут отправляться куда хотят, но могут двигаться теми путями, под которые идеально подстраиваются их волны. В частности, они не могут двигаться по спирали, подойти к ядру и разрушить его. Атом стабилен.
Квантовые волны также объяснили тайну, которой было два века от роду: атомные спектры. Относительно просто вытрясти свет из атомов и заставить показать их уникальные спектры. Это можно сделать, добавив какой-то элемент, например, натрий к огню, и смотреть на свет сквозь призму или дифракционную решетку, в результате чего свет разделяется на составляющие его цвета-компоненты. Получится серия ярких линий, в случае натрия будут две особенно яркие желто-оранжевые. Это знакомый нам цвет уличных фонарей. Если мы возьмем пары ртути, то цвет будет голубовато-зеленым, у звезд – розовый, что объясняется способностью водорода эмитировать видимый свет с дальнего конца красной полосы радуги. Эти красивые цвета требовали объяснения. Благодаря чему они получаются? Почему они варьируются у разных элементов? Теперь мы знаем, что они являются результатом квантовых движений электронов внутри атомов.