Затем Томсон стал подробнейшим образом разрабатывать концепцию электронов как частиц, входящих в состав атома. Он определил, что количество электронов в атоме зависит от атомного веса. Томсон предложил модель атома, который состоит из положительно заряженной сферы, в которой электроны находятся в стабильном статическом равновесии с их взаимным отталкиванием и притяжением к положительно заряженной сфере. Он показал, что такая модель будет иметь периодические свойства, если электроны собираются в последовательные кольца по мере увеличения их числа.
То есть мы точно знаем, что электроны существуют, с 1897 года. Также мы знаем, что их присутствие в атомах является источником спектра. Даже до того как Томсон доказал это – доказал так, что не осталось сомнений, ученые подозревали, что существует эта составляющая атома, и даже приходили к выводу, что у нее имеется электрический заряд и она обладает двусторонним магнетизмом, сродни двойственности северный полюс – южный полюс самого обычного магнита. Полвека спустя это объяснил Поль Дирак и предсказал существование антиматерии.
В 1896 году Питер Зееман, физик Амстердамского университета, а в дальнейшем директор института физики этого университета, лауреат Нобелевской премии по физике 1902 года за выдающиеся заслуги в исследованиях влияния магнетизма на радиационные явления, обратил внимание на то, что, когда сильные магниты находятся рядом с его образцами, яркие желтые линии, излучаемые натрием, слегка меняются.
Спектральные линии, которые он исследовал, обычно были резкими и четкими, но, как обратил внимание Зееман, расширялись в магнитном поле. В дальнейшем, после появления более мощной аппаратуры, выяснилось: то, что казалось расширением, в действительности является разделением одной линии на две или больше. Зееман в свое время при имевшихся в его распоряжении инструментах этого видеть не мог. Он смотрел на спектральные линии, как смотрит близорукий человек без очков.
Выяснилось, что это происходит из-за магнетизма электрона. Так же как магниты могут притягивать и отталкивать в зависимости от расположения севера и юга, точно так же и движение электрона в магнитном поле влияет на его энергию. Следствием этого является легкая модификация энергий любых эмитируемых фотонов, а поэтому изменяется и рисунок спектральных линий.
«Эффект Зеемана» показал, что электрон может действовать как маленький магнит со своим собственным северным и южным магнитными полюсами. Создавалось впечатление, что электрон способен вращаться и делать это в магнитном поле как в одну, так и в другую сторону, то есть по часовой стрелке и против. Сегодня идея о том, что электрон, размер которого не поддается измерению, может «вращаться», кажется не имеющей смысла, но физики все равно продолжают использовать слово «спин», когда говорят о способности электрона действовать как магнит.
Определенно гипотеза о такой двойственности электрона объяснила множество данных в атомной спектроскопии, но на протяжении многих лет идея о «вращении» (спине) была немногим более отчаянной попытки найти смысл во множестве собранных данных. И только Поль Дирак, соединив теорию относительности с квантовой механикой, смог объяснить, каким образом появилось это свойство и почему это происходит.
Вращение и антиматерия являются необходимыми свойствами физического мира, когда соединяются квантовые законы и теория относительности Эйнштейна. Именно Эйнштейн первым показал, что такое энергия на самом деле, поразительным следствием стал вывод о том, что материя – это пойманная в ловушку энергия. Когда энергия замораживается в частицах материи, то оставляет отрицательный след, это и есть антиматерия. Это первым обнаружил Поль Дирак.
Классические законы движения были открыты Исааком Ньютоном свыше 300 лет назад. Первый закон гласит, что всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние. Тела не любят выходить из состояния покоя или менять прямолинейное движение, а опыт показывает, что легче передвинуть лист, чем кусок свинца. Ньютон утверждал, что если применить одну и ту же силу к двум телам, то их относительное ускорение будет мерой внутренней инерции, или массы.
А что происходит, если непреодолимая сила встречается с неподвижным предметом? У неподвижного предмета должна быть бесконечная масса. Но такая концепция невозможна, по крайней мере, в механике Ньютона, поскольку вся масса во Вселенной не является бесконечной, хотя и огромной. Однако после того, как Эйнштейн переписал наш взгляд на мир в своей теории относительности, идея о бесконечной массе и полном сопротивлении ускорению там, где происходит искажение пространства и времени, становится реальностью.