Если мы имеем неподвижное тело и в течение секунды применяем к нему силу, то его скорость увеличится на некое значение, например 10 метров в секунду. А теперь снова приложим ту же силу. По Ньютону и по нашему жизненному опыту, скорость снова увеличится на 10 метров в секунду. Если повторять этот эксперимент, то тело будет ускоряться и ускоряться без ограничений. Хотя по Эйнштейну, если очень точно измерять изменения в скорости, обнаружится, что, хотя скорость выросла на 10, следующий толчок ускорит его чуть меньше, чем на 10 метров в секунду, и по мере движения быстрее и быстрее ускорять его станет труднее и труднее. Если тело будет двигаться на скорости, близкой к скорости света, то применение силы едва ли изменит его скорость.
Правила Ньютона являются идеальным приближением к точным законам движения, пока мы имеем дело только с предметами, которые двигаются медленно относительно скорости света. Скорость света составляет 300 000 километров в секунду, и законы Ньютона очень точны в том, что касается нашей обычной жизни. Но если нас интересует поведение электронов в ускорителе частиц, где совсем другие скорости, следует пользоваться описанием Эйнштейна.
В теории относительности Эйнштейна масса тела становится больше и больше по мере того, как оно движется быстрее и быстрее. При приближении к скорости света масса растет чрезвычайно быстро, заставляя тело еще больше сопротивляться ускорению. В конце концов, если попытаться достичь скорости света, то масса станет бесконечной. Поэтому невозможно ускорить массивный предмет до скорости света. И передвигаться со скоростью света может только то, что не имеет массы, например сам свет!
Хотя идея о том, что инерция меняется вместе со скоростью, может показаться странной с точки зрения нашего «здравого смысла», тем не менее это так, как показывают годы экспериментов с частицами высоких энергий. Если частицы материи отправляются в путь в лабораториях уровня ЦЕРН, чтобы встретиться с лучами антиматерии, идущими в другом направлении, то расчет времени является чрезвычайно важным для того, чтобы они прибыли куда следует, когда следует, и при этом нужно учитывать относительность.
Взаимоотношение между энергией и движением, о котором известно с времен Ньютона, и которое приняли пионеры новой квантовой механики, изначально помогло в описании поведения атомов и электронов, но в действительности оно является более сложным.
Удивительным и имеющим гораздо большее значение в теории относительности Эйнштейна является то, что даже неподвижный предмет содержит энергию, которая «поймана в ловушку» в составляющих его атомах. Количество энергии – это «Е» в знаменитом уравнении
Если мы говорим о движущемся теле, то в сумму должна быть добавлена кинетическая энергия. Естественным кажется простое добавление кинетической энергии к энергии, содержащейся в массе (mc2
). Это было бы так, если бы не тот факт, что при движении масса предмета m увеличивается, и таким образом величинаЗначение теории относительности Эйнштейна для природы энергии просто поразительно. Во-первых, массивные предметы в покое содержат количество энергии
Но как может электрон с отрицательным электрическим зарядом появиться из энергии в струе света, который не имеет электрического заряда? И именно здесь мы начинаем говорить о двух формах материи, существующих в природе. Отрицательно заряженный электрон имеет положительно заряженную форму, известную как позитрон. Энергия фотона, частицы света, оказывается в ловушке в этих двух взаимодополняющих частях вещества. Этот процесс также может происходить наоборот: электрон и позитрон могут аннигилировать друг друга, энергию каждого возьмут фотоны, которые несутся со сцены разрушения на скорости света.