Читаем Программирование. Принципы и практика использования C++ Исправленное издание полностью

  Очевидно, что пользователи и разработчики исполняют разные роли, но разделение (открытого) интерфейса, предназначенного для пользователей, от (закрытых) деталей реализации, используемых только разработчиками, представляет собой мощное средство структурирования программного кода. Открытый интерфейс должен содержать только средства, необходимые пользователю, включая конструкторы для инициализации объектов. Закрытая реализация содержит только то, что необходимо для реализации открытых функций, как правило, данные и функции, связанные с массой деталей, о которых пользователю незачем знать, поскольку он их не использует непосредственно.

Приступим к разработке типа Token_stream. Что пользователь ждет от него? Очевидно, что нам нужны функции get() и putback() — именно поэтому мы ввели понятие потока лексем. Класс Token_stream должен создавать объекты класса Token из символов, считанных из потока ввода, поэтому нам необходима возможность создавать объекты класса Token_stream, способные считывать данные из потока cin. Таким образом, простейший вариант класса Token_stream выглядит примерно так:

class Token_stream {

public:

  Token_stream();        // создает объект класса Token_stream,

                         // считывающий данные из потока cin

  Token get();           // получает объект класса Token

  void putback(Token t); // возвращает объект класса Token

                         // обратно

private:

                         // детали реализации

};

Это все, что требуется от пользователя для использования объектов класса Token_stream. Опытные программисты могут поинтересоваться, почему поток cin является единственным возможным источником символов, — просто мы решили вводить символы с клавиатуры. Это решение можно пересмотреть в упражнении, приведенном в главе 7.

Почему мы использовали “длинное” имя putback(), а не логичное имя put()? Тем самым мы подчеркнули асимметрию между функциями get() и putback(): мы возвращаем лексему в поток ввода, а не вставляем ее в поток вывода. Кроме того, функция putback() есть в классе istream: непротиворечивость имен — полезное свойство. Это позволяет людям запоминать имена функций и избегать ошибок.

Теперь можем создать класс Token_stream и использовать его.

Token_stream ts;    // объект класса Token_stream с именем ts

Token t = ts.get(); // получаем следующий объект класса Token из объекта ts

// ...

ts.putback(t); // возвращает объект t класса Token обратно в объект ts

Это все, что нам нужно, чтобы закончить разработку калькулятора.

<p id="AutBody_Root111"><strong>6.8.1. Реализация класса Token_stream</strong></p>

Теперь необходимо реализовать три функции класса Token_stream. Как представить класс Token_stream? Иначе говоря, какие данные необходимо хранить в объекте класса Token_stream, чтобы он мог выполнить свое задание? Необходима память для лексемы, которая будет возвращена обратно в объект класса Token_stream. Для простоты будем считать, что лексемы возвращаются в поток по одной. Этого вполне достаточно для нашей программы (а также для очень многих аналогичных программ). Таким образом, нужна память для одного объекта класса Token и индикатор ее занятости.

class Token_stream {

public:

  Token_stream(); // создает объект класса Token_stream,

                  // считывающий данные из потока cin

  Token get();    // получает объект класса Token

                  // (функция get() определена в разделе 6.8.2)

  void putback(Token t); // возвращает объект класса Token

                         // обратно

private:

  bool full;    // находится ли в буфере объект класса Token?

  Token buffer; // здесь хранится объект класса Token,

                // возвращаемый в поток функцией putback()

};

Теперь можно определить (написать) три функции-члена. Конструктор и функция putback() никаких трудностей не вызывают, поскольку они невелики. Мы определим их в первую очередь. Конструктор просто устанавливает настройки, свидетельствующие о том, что буфер пуст.

Token_stream::Token_stream()

  :full(false), buffer(0) // в буфере нет ни одного объекта

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных