Читаем Программирование. Принципы и практика использования C++ Исправленное издание полностью

vector var_table;

В вектор var_table можно записать сколько угодно объектов класса Variable, а найти их можно, просматривая элементы вектора один за другим. Теперь можно написать функцию get_value(), которая ищет заданную строку name и возвращает соответствующее ей значение value.

double get_value(string s)

  // возвращает значение переменной с именем s

{

  for (int i = 0; i

  if (var_table[i].name == s) return var_table[i].value;

  error("get: неопределенная переменная", s);

}

Этот код действительно прост: он перебирает объекты класса Variable в векторе var_table (начиная с первого элемента и продолжая до последнего включительно) и проверяет, совпадает ли их член name c аргументом s. Если строки name и s совпадают, функция возвращает член value соответствующего объекта. Аналогично можно определить функцию set_value(), присваивающую новое значение члену value объекта класса Variable.

void set_value(string s, double d)

  // присваивает объекту класса Variable с именем s значение d

{

  for (int i = 0; i

  if (var_table[i].name == s) {

    var_table[i].value = d;

    return;

  }

  error("set: неопределенная переменная", s);

}

Теперь можем считать и записывать переменные, представленные в виде объектов класса Variable в векторе var_table. Как поместить новый объект класса Variable в вектор var_table? Как пользователь калькулятора должен сначала записать переменную, а затем присвоить ей значения? Можно сослаться на обозначения, принятые в языке С++.

double var = 7.2;

Это работает, но все переменные в данном калькулятора и так хранят значения типа double, поэтому явно указывать этот тип совершенно не обязательно. Можно было бы написать проще.

var = 7.2;

Что ж, возможно, но теперь мы не можем отличить определение новой переменной от синтаксической ошибки.

var1 = 7.2; // определение новой переменной с именем var1

var1 = 3.2; // определение новой переменной с именем var2

Ой! Очевидно, что мы имели в виду var2 = 3.2; но не сказали об этом явно (за исключением комментария). Это не катастрофа, но будем следовать традициям языков программирования, в частности языка С++, в которых объявления переменных с их инициализацией отличаются от присваивания. Мы можем использовать ключевое слово double, но для калькулятора нужно что-нибудь покороче, поэтому — следуя другой старой традиции — выбрали ключевое слово let.

let var = 7.2;

Грамматика принимает следующий вид:

Вычисление:

  Инструкция

  Печать

  Выход

  Инструкция вычисления

Инструкция:

  Объявление

  Выражение

Объявление:

  "let" Имя "=" Выражение

Вычисление — это новое правило вывода в грамматике. Оно выражает цикл (в функции calculate()), который позволяет выполнять несколько вычислений в ходе одного сеанса работы программы. При обработке выражений и объявлений это правило опирается на правило Инструкция. Например, инструкцию можно обработать следующим образом:

double statement()

{

  Token t = ts.get();

  switch (t.kind) {

  case let:

    return declaration();

    default:

    ts.putback(t);

    return expression();

  }

}

Вместо функции expression() в функции calculate() можем использовать функцию statement().

void calculate()

{

  while (cin)

  try {

    cout << prompt;

    Token t = ts.get();

    while (t.kind == print) t=ts.get(); // игнорируем "печать"

    if (t.kind == quit) return;         // выход

    ts.putback(t);

    cout << result << statement() << endl;

  }

  catch (exception& e) {

    cerr << e.what() << endl;           // выводим сообщение об ошибке

    clean_up_mess();

  }

}

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных