Читаем Происхождение жизни. От туманности до клетки полностью

Как показано в работах Манфреда Эйгена, для поддержания структуры живой системы из поколения в поколение необходимо, чтобы среднее количество новых значимых (т. е. сильно влияющих на приспособленность) мутаций в каждом поколении не превышало одной. Все современные организмы, имеющие геномы в диапазоне от 5000 до 5 000 000 нуклеотидов (а это вирусы и бактерии), имеют частоту мутаций в пределах 0,5–1 за поколение, что ниже порога Эйгена. Животные и растения с большими геномами обошли это ограничение за счет избыточности многих генов и полового размножения (так, у человека в среднем происходит 30 новых мутаций за поколение), но вряд ли эти механизмы работали в РНК-мире. Частота мутаций складывается из двух факторов: частоты ошибок при копировании генома и частоты повреждений генома между копированиями. Точность работы РНК-зависимой РНК-полимеразы в принципе может быть достаточно высокой: в экспериментах по искусственному отбору точность РНК-полимеразы вируса желтой лихорадки была доведена до 1 ошибки на 5 000 000 нуклеотидов, что близко к точности бактериальных ДНК-полимераз (Pugachev et al., 2004). Однако уязвимость РНК к гидролизу и дезаминированию цитозина неизбежно вызывает частое появление мутаций между копированиями и ограничивает размер РНК-генома на уровне менее 100 000 пар нуклеотидов.

Реакция превращения рибозы в дезоксирибозу очень сложна и связана с образованием опасных радикалов. Рибозимы не могут ее проводить, так как будет повреждаться рибоза в их структуре. Все известные ферменты, проводящие эту реакцию (рибонуклеотид-редуктазы), – большие белки размером около 1000 аминокислот, т. е. для их кодирования нужно как минимум 3000 нуклеотидов. Поэтому между РНК и ДНК-геномами, возможно, были промежуточные стадии, более простые в получении, чем ДНК, но более стабильные, чем РНК. Одной из таких промежуточных стадий мог быть метил-РНК-геном (Poole et al., 2000). В современных рибосомных и некоторых других клеточных РНК к отдельным 2' – гидроксильным (-ОН) группам рибозы присоединены метильные (-СН3) группы (рис. 14.1, справа). Это блокирует «паразитные» каталитические процессы и защищает цепь РНК от гидролиза в метилированном месте. Метилирование РНК у архей и эукариот делается одним ферментом при помощи «направляющих» малых ядрышковых РНК (мяРНК, snoRNA). Метилированию подвергается до 1–2 % нуклеотидов рибосомной РНК в клетках, а в пробирке в отсутствие мяРНК тот же фермент может прометилировать до 8 % нуклеотидов. Стабильность метил-РНК генома могла отодвинуть предел Эйгена в несколько раз по сравнению с РНК-геномом, возможно, до 300 000–500 000 пар нуклеотидов.

LUCA – организм или сообщество?

Предельный размер метил-РНК-генома недостаточен для кодирования всех белков, которые были у LUCA. Что еще важнее, в наборе генов LUCA закодированы дублирующие пути обмена веществ, которые разными способами дают один и тот же продукт. В современных клетках это бывает редко, и обычно два альтернативных пути работают в разных условиях, например при наличии и отсутствии кислорода. Так, в работе Браакмана и Смита (2013) изучалась эволюция путей фиксации углекислого газа, начиная от LUCA. Авторы пришли к выводу, что у LUCA было дублирование путей фиксации CO2, причем оба пути – восстановительный цикл Кребса и ацетил-КоА-путь – работали одновременно. Они предположили, что такое дублирование обеспечивало надежность обмена веществ в условиях несовершенной регуляции генов и слабой изоляции внутренней среды организма от внешней. Но вряд ли этим можно объяснить все случаи дублирования биохимических функций LUCA.

По набору путей обмена веществ получается, что общий предок мог «в одиночку» составлять целую экосистему с замкнутыми геохимическими циклами, что практически не встречается в современной биосфере. Лишь недавно в золотой шахте на глубине свыше 2 км была найдена бактерия Desulforudis audaxviator, полностью обеспечивающая себя всем необходимым без помощи других видов (см. http://elementy.ru/news/430872), но это удивительное исключение. Иными словами, по разнообразию путей обмена веществ последний общий предок больше похож на современное микробное сообщество из многих видов, чем на любой отдельный вид бактерий или архей.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги