Читаем Происхождение жизни. От туманности до клетки полностью

Вирусы, по-видимому, существуют со времен РНК-мира. Существует огромное их разнообразие – одно– и двухцепочечные ДНК-вирусы, ретровирусы, одно– и двухцепочечные РНК-вирусы. Механизмы их репликации очень разные, и не всегда понятно, как одни могли произойти из других. Однако есть несколько характерных генов, которые встречаются во всех классах вирусов и совершенно отсутствуют в клеточных организмах. Это JRC (так называемый рулет с вареньем, jelly-roll capsid protein) – один из типов белков вирусных оболочек, хеликаза S3H, запускающая копирование разных типов вирусных геномов, и упаковочная АТФаза, переносящая ДНК и РНК в собранные белковые оболочки с затратой АТФ. Широкое распространение этих генов означает, что вирусы с древнейших времен составляли единый «вирусный мир» и обменивались между собой генами, если одновременно заражали одного хозяина.

Благодаря вирусам можно обойти еще одно сложное место на пути от РНК-геномов к ДНК-геномам. Как мы говорили выше, частота мутаций складывается из двух факторов: ошибки при копировании генома и повреждения геномных молекул между копированиями. Переход от РНК к ДНК снижает уровень повреждений между копированиями, но частота ошибок копирования в момент перехода должна возрасти! При смене типа геномного материала нужны перестройки фермента-полимеразы, который отвечает за копирование. Старая, хорошо отработанная и достаточно точная полимераза при этом неизбежно сменяется на «сырую» и недоработанную. Позже естественный отбор доведет точность новой полимеразы до совершенства, но непосредственно в момент смены РНК на ДНК отбор будет поддерживать старый геном с точной полимеразой. Закрепление замены урацила на тимин еще проблематичнее. Сам по себе тимин ничуть не лучше урацила. Он позволяет находить и исправлять дезаминирование цитозина в геноме, но для этого нужно еще несколько ферментов. Тимин в ДНК выгоднее, чем урацил, когда уже есть система обнаружения урацила в ДНК и замены его на цитозин. Но по отдельности тимидилат-синтаза бесполезна, а система замены урацила вредна, и непонятно, какой из этих ферментов мог возникнуть первым.

Патрик Фортер (Forterre, 2005; Forterre, Prangishvili, 2009) разрешает эту проблему. По его гипотезе эксперименты с новыми полимеразами велись вирусами, а первой выгодой от смены типа генома было ускользание от защитных систем хозяина. Большинство клеток и в наше время используют разные ферментативные системы, опознающие и уничтожающие вирусные ДНК и РНК. «Гонка вооружений» между вирусами и их доклеточными хозяевами могла вызвать очень быструю эволюцию геномных материалов и полимераз для их копирования. И сегодня у вирусов встречаются разнообразные геномные нуклеиновые кислоты, например ДНК с урацилом у бактериофагов PBS1 и PBS2 (Forterre, 2002). Среди вирусов известны ДНК с дополнительными модификациями нуклеотидов: гидроксиметилцитозин у бактериофага T4, гидроксиметилурацил у бактериофага SP01 и 2-аминоаденин у цианофага S-2L (Poole, Logan, 2005). Все эти странные нуклеотиды помогают вирусной ДНК избежать расщепления ферментами хозяина.

Если замена рибозы на дезоксирибозу когда-то позволила вирусу в 10 раз эффективнее заражать жертв ценой 5-кратного роста числа мутаций, то это было выгодное решение. Кроме того, малый размер вирусных геномов смягчает требования к точности копирования. А необходимость долгого автономного существования вирусной частицы без возможности исправить повреждения и без УФ-защиты минералов ужесточает отбор на устойчивость вирусного генома по сравнению с геномом протоклеток. Лишь после отработки в вирусах новые полимеразы были подхвачены их хозяевами (рис. 14.2).


Происхождение систем репликации ДНК

Клеточная ДНК существует в двухцепочечной форме, причем цепи направлены навстречу друг другу. Молекула ДНК-полимеразы, строящая новую цепочку по шаблону старой, всегда двигается в одном направлении – от 3` к 5` концу. Поэтому нельзя просто взять две молекулы ДНК-полимеразы и начать ими синтез двух новых цепей из одной точки двух старых цепей – молекулы ДНК-полимеразы будут двигаться в разные стороны, и большая часть генома в процессе копирования окажется в уязвимой одноцепочечной форме. Чтобы обойти эту сложность, копирование ДНК в клетках идет при помощи специальной молекулярной машины, которая называется «репликативная вилка» и состоит из более чем 20 видов белков. В этом комплексе работа нескольких молекул ДНК-полимеразы согласована так, чтобы не было длинных одноцепочечных участков ДНК.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги