Далее, имеется путаница по поводу того, что именно вычисляется. Не предполагается, что Веденивски способен предъявить все 100 миллиардов этих нулей, вычисленных с высокой (или даже со средней) точностью. Цель подобных исследований состоит главным образом в подтверждении Гипотезы Римана, а это можно сделать, не прибегая к высокоточным вычислениям нулей. Имеются некоторые теоретические построения, позволяющие вычислить, сколько нулей имеется в критической полосе между высотами
Рисунок 16.1.
ВысотыА как обстоит дело с табулированием точных положений нулей? Оказывается, помимо того, что делалось в связи с проверкой Гипотезы Римана, в этой задаче сделано на удивление мало. Насколько мне вообще известно, первые сколько-нибудь длинные таблицы такого рода были опубликованы Брайаном Хейзелгровом. В 1960 году, работая на мощных компьютерах второго поколения в университетах Кембриджа и Манчестера в Англии, Хейзелгров с сотрудниками затабулировали первые 1600 нулей с точностью до шести знаков после запятой и опубликовали эту таблицу. Эндрю Одлыжко сообщил мне, что, когда он в конце 1970-х годов начинал исследования нулей дзета-функции, таблицы Хейзелгрова были единственными известными ему данными такого рода, хотя он и думает, что Леман в ходе своей работы в 1966 году мог в действительности с высокой точностью вычислить большее количество нулей. У самого Эндрю есть таблица (на диске компьютера, а не в печатном варианте) первых двух миллионов нулей с точностью до девяти знаков после запятой. На момент написания этой книги это наибольшая из известных таблиц нулей.
Вся описанная выше деятельность относится к первым
За таблицей
16.1скрываются разнообразные истории. Фигурирующий там А.М. Тьюринг, например, — это тот самый Алан Тьюринг, который работал в области математической логики, разработав идею теста Тьюринга (способ решить, обладает ли компьютер или программа интеллектом) и машину Тьюринга (идеализированный компьютер, некий вариант мысленного эксперимента, позволяющий решать определенные задачи в математической логике). Имеется Премия Тьюринга, которую начиная с 1966 года ежегодно присуждает Ассоциация вычислительной техники за достижения в области программирования и прикладной математики, — аналог Филдсовской медали по математике или же Нобелевской премии в других науках. [150]Тьюринг был зачарован Гипотезой Римана. К 1937 году (когда ему было 26 лет) он составил мнение, что Гипотеза не верна, и вынашивал идею построения механического вычислительного устройства, которое позволило бы найти контрпример — нуль вне критической прямой. Он подал заявку на грант в Королевское общество с тем, чтобы покрыть расходы на создание этого устройства, и даже сам выточил несколько зубчатых колес на инженерном факультете Кингс-колледжа в Кембридже, где он тогда преподавал.