Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Выбранный нами отрезок критической прямой слишком короткий для того, чтобы достичь первой пары нулей при 1/ 2± 14,134725 i. Поскольку сама прямая растягивается, а спирали при этом, наматываясь все более и более вокруг точек -iи i, растут в размере, возникает интересный вопрос. Не случится ли так, что растяжение прямой и намотка спиралей удержат нули дзета-функции на небольшом удалении от точек -iи iнезависимо от того, сколь сильно увеличились спирали? Ответ — нет; по мере роста xнули дзета-функции отображаются в точки, расположенные сколь угодно далеко. Когда равняется первому нулю дзета-функции (это нуль при 1/ 2+ 14,134725 i), а аргумент xдостигает скромного триллиона, функция Li (x )добирается до вещественных частей, превышающих 2200.

В главе 14.vii упоминался недавний результат, полученный Бейсом и Хадсоном, — первое литлвудово нарушение (когда (x)впервые оказывается больше чем Li (x)) происходит до, а весьма вероятно, что и при x= 1,39822x10 316. Представим себе, что нам надо повторить весь процесс, с помощью которого мы вычислили (1000 000), но для указанного числа (назовем его числом Бейса-Хадсона) вместо 1000 000. Какая арифметика была бы тут задействована?

Ясно, что пришлось бы взять не 13, а большее число значений функции J. Корень 1050-й степени из числа Бейса-Хадсона равен 2,0028106…, а корень 1051-й степени равен 1,99896202…, так что надо будет взять корни первой, второй, …, 1050-й степени из этого числа и вычислить функцию Jпри всех этих аргументах. Это не так уж страшно, потому что многие числа между 1 и 1050 делятся на точные квадраты, а потому функция Мебиуса для них равна нулю. Сколь многие? На самом деле таких чисел 411, так что остается посчитать 639 значений функции J. [201]

Изображенные на рисунке 21.7двойные спирали пересекают положительную часть вещественной оси последовательно все далее на восток — в точках 2,3078382, 6,1655995 и 13,4960622. Если бы мы проводили вычисления для числа Бейса-Хадсона, то двойная спираль пересекла бы вещественную ось при гораздо большем значении, определяемом числом, которое начинается как 325 771 513 660 и далее содержит еще 144 цифры дозапятой. Спирали при этом невообразимо широкие, но, несмотря на это, все равно сходятся к iи -i. Это означает, что верхняя и нижняя спирали в сильной степени накладываются друг на друга — настолько сильно, что на рисунке их невозможно было бы различить. А критическая прямая, испещренная сидящими на ней нулями (если ГР верна!), колоссально растянута. Тогда на рисунке, аналогичном рисунку 21.3, в центре была бы значительно большая дыра — хотя все равно с центром в i, — а спираль триллионы раз наматывалась бы между двумя последовательными нулями с малыми номерами, весьма эффективно разбрасывая их координаты по комплексной плоскости, так что вещественные части колебались бы между чудовищно большими отрицательными и чудовищно большими положительными числами. И все это относится только к первым из 639 строк в таблице для вычисления (число Бейса-Хадсона). Вторичные члены и правда разошлись не на шутку.

Во всех вычислениях, проводившихся в данной главе, предполагалось (о чем мы время от времени напоминали), что ГР верна. Если она неверна, то наши изящные окружности и спирали представляют собой не более чем приближение, а где-то на большой высоте вдоль критической прямой — для значений где-то далеко-далеко в той бесконечной сумме по вторичным членам — логика нашего рассмотрения рассыпается. В теории, касающейся остаточного члена, ГР занимает центральное место.

X.

Мы достигли главной цели, поставленной перед математической частью этой книги, — показать глубокую связь между распределением простых чисел, воплощенным в функции (x), и нетривиальными нулями дзета-функции, которые дают значительный (а по теореме Литлвуда — временами и доминантный) вклад в разность между (x)и Li (x), т.е., другими словами, в остаточный член в ТРПЧ.

Все это открылось нам в блестящей работе Бернхарда Римана 1859 года. Сегодня, конечно, мы знаем намного больше, чем было известно в 1859 году. Однако великая головоломка, впервые сформулированная в той работе, по-прежнему остается нерешенной — она противостоит атакам лучших умов планеты так же твердо, как когда Риман писал о своих «недолгих бесплодных попытках» доказать ее в далекие времена, когда аналитическая теория чисел только-только родилась. Каковы же перспективы на сегодняшний день, когда усилия расколоть орешек ГР прилагаются уже пятнадцатое десятилетие?

<p>Глава 22. Она или верна, или нет</p></span><span>I.
Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука