Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

В качестве простой проверки возьмем строку с N = 6. Поскольку миллион — это 10 6, корень шестой степени из миллиона — это просто 10. Значение J(10) легко посчитать — оно оказывается равным 16/ 3. Поскольку число 10 свободно от квадратов и представляет собой произведение двух простых чисел, функция Мебиуса (10) имеет значение +1. Итак, в строке с N = 6 последний столбец должен быть равен (+1)x( 1/ 6)x( 16/ 3). Это составляет 8/ 9, что и говорится в суммарной колонке для строки с N = 6.

При N = 1 главный член, равен просто Li(1000 000); именно такое приближение к точному ответу дает нам ТРПЧ. Какова же разница между этим приближением и (1000 000)? Ответ получается мгновенно путем простого вычитания: разность, вычисленная как (1000 000) минус Li(1000 000) (чтобы сохранить знаки в нашей таблице), равна -129,54916. Из чего эта разница слагается?

Вот из чего:

из главных членов-100,20254
из вторичных членов-29,37378
из членов с ln 20,03515
из интегральных членов-0,00799

Наибольший вклад в разницу дают главные члены. Однако эти члены вполне предсказуемы — они убывают быстро и неуклонно.

Разница, возникающая из вторичных членов, имеет тот же порядок величины, однако составляющие ее компоненты — те самые вторичные члены — вызывают куда больше беспокойства. Первый вторичный член достаточно велик и отрицателен; правда, нет никаких очевидных причин, почему он должен оказаться именно таким. Но и другие не очень помогают. Если просто двигаться вниз вдоль колонки с вторичными членами, не обращая внимания на знаки минус, а следя только за тем, будет ли каждый следующий член больше или меньше предыдущего по величине, то мы увидим такое: меньше, больше, меньше, меньше, больше, меньше, меньше, больше, меньше, меньше, больше, больше. Вторичный член при N = 19 оказывается почти таким же, как и при N = 6. Все эти вторичные члены — члены, которые выражаются через нули дзета-функции, — джокеры в нашем вычислении. А члены с ln 2, как и было обещано, несущественны.

Вспомним о статье Литлвуда 1914 года (см. главу 14.vii), где он доказал, что неверно утверждение, что Li (x)всегда превосходит (x). Это означает, что разность рано или поздно станет положительной. Поскольку главные члены очень быстро убывают по величине, а функция Мебиуса делает несколько первых из них отрицательными, включая и по-настоящему большие (при N = 2, N = 3 и N = 5), нелегко представить себе, как же эти главные члены вообще могут внести в разность какой-нибудь иной вклад, кроме как большое отрицательное число. Если в итоге разность должна оказаться положительной (а Литлвуд доказал, что такое рано или поздно случится), то это отрицательное число должно поглотиться большими, положительными, вторичными членами. Чтобы такое произошло, вторичные члены — нули дзета-функции — должны серьезным образом выйти из-под контроля. Судя по всему, так они и делают.


IX.

Чтобы еще глубже разобраться в смысле остаточного члена, снова взглянем на двойную спираль в правой части рисунка 21.4. Она представляет нам функцию Li( x критическая прямая) при x= 20. Критическая прямая — испещренная, если ГР верна, всеми нетривиальными нулями дзета-функции — отображается под действием функции Li(20 z) в спираль. Что будет, если вместо 20 мы возьмем какое-нибудь большее значение х? Какой вид примут соответствующие спирали?

Общее представление о том, что при этом происходит, дается на рисунке 21.7. Там представлены три функции: Li(10 крит. прямая), Li(100 крит. прямая) и Li(1000 крит. прямая). Во всех трех случаях показано, как отображается один и тот же отрезок критической прямой — отрезок от 1/ 2- 5 iдо 1/ 2+ 5 i.

Рисунок 21.7.Li( xкритическая прямая) при x= 10, 100 и 1000. Отображаемая часть критической прямой представляет собой отрезок от 1/ 2- 5 iдо 1/ 2+ 5 i.

Как видно, при увеличении xот 10 до 100 и далее до 1000 происходят следующие явления.

• Спирали растут в размере, но при этом по-прежнему сходятся к тем же двум точкам -iи i.

• Отрезок критической прямой, который мы отображаем (длина его равна 10 единицам), все сильнее и сильнее растягивается, накручиваясь все большее и большее число раз вокруг точек -iи i.

• Верхняя и нижняя спирали приближаются друг к другу, «целуются» при каком-то значении xмежду 100 и 1000, а после этого пересекаются (спирали в действительности «целуются», когда x = 399,6202933538…).

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука