Нам не известно практически ничего о бытовой стороне жизни Римана в берлинский период, жизни за пределами его математических занятий. Дедекинд сообщает только об одном достойном упоминания инциденте. В марте 1848 года берлинская толпа, разгоряченная февральской революцией в Париже, вышла на улицы, требуя объединения германских государств в единую империю. Возводились баррикады, солдаты пытались их снести, пролилась кровь. Прусским королем в то время был Фридрих-Вильгельм IV, несколько мечтательный и отрешенный от мира человек, находившийся под сильным воздействием идей романтизма, с сентиментальными воззрениями относительно своего народа и с представлениями об идеальном государстве как о патерналистской монархии. Во время кризиса он показал свою полную несостоятельность, отправив армию назад в казармы и оставив дворец незащищенным до того, как бунтовщики были рассеяны. Студенты университета образовали верные власти караульные отряды для защиты короля, и Риман нес службу в таком карауле с 9:00 одного дня до часа следующего дня, т.е. в общей сложности 28 часов.
По возвращении в Геттинген в 1849 году Риман начал работу над диссертацией, которую он защитил через два года, в возрасте 25 лет; диссертация была посвящена теории функций комплексной переменной. Через три года после этого он начал преподавание в Геттингене, а в 1857 году получил место экстраординарного профессора, что было его первой должностью, на которой ему платили постоянное жалованье. (Обычно предполагалось, что лекторы обходятся тем, что платят за обучение студенты, — столько студентов, сколько лектору удастся привлечь на свои лекции. Должность эта называлась Privatdozent — буквально «частный преподаватель».)
Если пользоваться языком, употребительным в современных биографиях знаменитостей, то 1857 год следует также назвать «годом прорыва» Римана. Его диссертация 1851 года ныне рассматривается как классический математический труд XIX столетия, но в момент своего появления она не привлекла большого внимания, несмотря на энтузиазм, который выказал Гаусс. Другие работы, написанные Риманом в начале 1850-х годов, не получили широкой известности и были опубликованы в доступном для публики виде только после его смерти. Относительная известность, которую он вообще приобрел, пришла к нему благодаря содержанию его лекций, но и тут таилась сложность: значительная часть этого содержания слишком опережала время, чтобы ее должным образом оценили. Однако в 1857 году Риман опубликовал работу по анализу, немедленно получившую признание как существенный вклад в эту науку. Она называлась «Теория абелевых функций».[15] В ней он обратился к актуальным проблемам, применив остроумные и новаторские методы. За год или два его имя стало известно математикам по всей Европе. В 1859 году он стал ординарным профессором[16] в Геттингенском университете; эта должность наконец принесла ему достаточные средства, чтобы жениться. Женился он три года спустя на Элизе Кох, подруге своей старшей сестры.
11 августа того же 1859 года, незадолго до своего 33-летия, Бернхард Риман стал членом-корреспондентом Берлинской академии наук. Основанием для принятия его в ряды академии послужили те две единственные работы Римана, которые пользовались известностью, — диссертация 1851 года и работа 1857 года по абелевым функциям. Избрание в члены Берлинской академии наук было огромной честью для молодого математика. По традиции, новоизбранный член представлял в академию оригинальную работу по теме своих исследований. Работа, которую представил Риман, называлась «О числе простых чисел, не превышающих данной величины» (Über die Anzahl der Primzahlen unter einer gegebenen Grösse).
Математика после этого уже никогда не была прежней.
Глава 3. Теорема о распределении простых чисел
Итак, сколько же имеется простых чисел, не превышающих некоторую заданную величину? Очень скоро мы это узнаем, но сначала — пятиминутное повторение на тему простых чисел.
Возьмем положительное целое число — для примера, 28. Какие числа делят его
Разумеется, каждое число делится на 1; и каждое делится само на себя. Так что единица и само число — не слишком интересные делители. Если использовать слово, которое математики очень любят, — это «тривиальные» делители. Интересные же делители в нашем случае — это 2, 4, 7 и 14. О них говорят как о
Получаем, что у числа 28 четыре собственных делителя. Но у числа 29 собственных делителей нет вовсе. Ничто не делит число 29 нацело, кроме, конечно, 1 и 29. Это —
Приведем все простые числа, не превосходящие 1000.
2 3 5 7 11 13 17 19
23 29 31 37 41 43 47 53