Читаем Простая одержимость полностью

Важно понимать, что табличка, подобная таблице 3.1, — это только модель функции. Сколько имеется простых чисел, меньших числа 31 556 926? Можно было бы ответить, внедряя в табличку дополнительные строки, но с учетом моего намерения удержать число страниц этой книги в некоторых разумных пределах имеется, очевидно, ограничение на то, сколько строк я могу вставить. Приведенная таблица — не более чем модель функции, ее «моментальный снимок», сделанный при определенных аргументах (выбранных с некоторым дальним прицелом).

На самом деле обычно не существует хорошего способа показать функцию во всей ее красе. Иллюстрировать какие-то конкретные свойства функции иногда помогает график, но в данном случае он достаточно бесполезен. Если вы попытаетесь изобразить содержимое таблицы 3.1 в виде графика, вы быстро поймете, что я имею в виду. Усилия по построению графика дзета-функции, которые будут предприняты в главе 9.iv, прояснят этот момент. Математики обычно получают некоторое общее представление о конкретной функции, тесно работая с ней в течение достаточно длительного времени, наблюдая при этом за всеми ее свойствами и особенностями. С помощью таблицы или графика не часто удается охватить функцию целиком.

V.

Еще о функциях надо заметить, что наиболее важные из них носят имена. А действительно важные обозначаются специальными символами. Функция, модель которой приведена в таблице 3.1, носит имя «функции числа простых чисел» и обозначается символом π(N), что читается как «пи от эн».

Знаю, знаю — может возникнуть путаница. Ведь π — это отношение длины окружности к ее диаметру, то самое невыразимое

3,14159265358979323846264….

Но новое использование символа π не имеет к этому числу ровно никакого отношения. В греческом алфавите всего 24 буквы, и к тому времени, как математики собрались дать имя этой функции (лично ответственный за это — Эдмунд Ландау, который ввел такое обозначение в 1909 году, — см. главу 14.iv), все 24 буквы уже были порядком израсходованы, и пришлось пустить их по кругу. Мне жаль, что так получилось, но это не моя вина. Данное обозначение в настоящий момент является абсолютно стандартным, так что его придется терпеть.

(Если вы хоть раз занимались мало-мальски серьезным программированием на компьютере, то вам знакома концепция перегрузки символа. Использование буквы π для двух совершенно различных целей есть некоторое подобие перегрузки этого символа.)

Итак, функция π(N) определена как число простых чисел до N (включая само N, хотя это довольно редко имеет значение, и я не буду особенно следить за употреблением выражений «меньших, чем» и «не превышающих»). Но вернемся к нашему основному вопросу: есть ли какое-нибудь правило, какая-нибудь изящная формула, которая даст нам значение π(N), избавив от необходимости заниматься счетом?

Позвольте мне устроить небольшой фокус с таблицей 3.1. Я поделю первую колонку на вторую — аргументы на значения. Я не гонюсь за безумной точностью. И вообще буду пользоваться карманным калькулятором за 6 долларов, с которым я хожу в супермаркет. Вот что получается: 100 разделить на 168 даст 5,9524; 1 000 000 разделить на 78 498 даст 12,7392. Еще четыре результата подобного же вычисления дают нам таблицу 3.2.

NN/π(N)
1 0005,9524
1 000 00012,7392
1 000 000 00019,6665
1 000 000 000 00026,5901
1 000 000 000 000 00033,5069
1 000 000 000 000 000 00040,4204

Таблица 3.2.

Посмотрим пристально на эти значения. Они всякий раз возрастают на 7. Точнее, на число, которое болтается между 6,8 и 7,0. Может, вам это и не кажется чем-то особенно чудесным, но когда математик видит такую таблицу, над головой у него ярко вспыхивает лампочка и определенное слово приходит ему на ум. Позвольте объяснить.

VI.

Имеется определенное семейство функций, которые страшно важны в математике, — показательные функции. Не исключено, что вы о них кое-что знаете. Их еще называют «экспоненциальными», и это слово проникло из математики в обычный язык. Мы все надеемся, что наши деньги, вложенные в инвестиционные фонды, будут расти экспоненциально — другими словами, быстрее и быстрее.

С принятой нами точки зрения — иллюстрирования функций двухколоночными таблицами типа таблицы 3.1 — можно нестрого определить показательную функцию следующим образом. Если взять набор значений аргумента так, чтобы при переходе от строки к строке они росли как результат регулярного сложения, и если при этом окажется, что получающиеся значения функции растут как результат регулярного умножения, то перед нами — показательная функция. Слово «регулярный» здесь означает, что происходит прибавление одного и того же числа или умножение на одно и то же число.

Рассмотрим пример. Возьмем правило «вычислить 5×5×5×5×… — выражение, содержащее N пятерок».

N5N
15
225
3125
4635
Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги