Важно понимать, что табличка, подобная таблице 3.1, — это только
На самом деле обычно не существует хорошего способа показать функцию во всей ее красе. Иллюстрировать какие-то конкретные свойства функции иногда помогает график, но в данном случае он достаточно бесполезен. Если вы попытаетесь изобразить содержимое таблицы 3.1 в виде графика, вы быстро поймете, что я имею в виду. Усилия по построению графика дзета-функции, которые будут предприняты в главе 9.iv, прояснят этот момент. Математики обычно получают некоторое общее представление о конкретной функции, тесно работая с ней в течение достаточно длительного времени, наблюдая при этом за всеми ее свойствами и особенностями. С помощью таблицы или графика не часто удается охватить функцию целиком.
Еще о функциях надо заметить, что наиболее важные из них носят имена. А
Знаю, знаю — может возникнуть путаница. Ведь
Но новое использование символа
(Если вы хоть раз занимались мало-мальски серьезным программированием на компьютере, то вам знакома концепция
Итак, функция
Позвольте мне устроить небольшой фокус с таблицей 3.1. Я поделю первую колонку на вторую — аргументы на значения. Я не гонюсь за безумной точностью. И вообще буду пользоваться карманным калькулятором за 6 долларов, с которым я хожу в супермаркет. Вот что получается: 100 разделить на 168 даст 5,9524; 1 000 000 разделить на 78 498 даст 12,7392. Еще четыре результата подобного же вычисления дают нам таблицу 3.2.
1 000 | 5,9524 |
1 000 000 | 12,7392 |
1 000 000 000 | 19,6665 |
1 000 000 000 000 | 26,5901 |
1 000 000 000 000 000 | 33,5069 |
1 000 000 000 000 000 000 | 40,4204 |
Таблица 3.2.
Посмотрим пристально на эти значения. Они всякий раз возрастают на 7. Точнее, на число, которое болтается между 6,8 и 7,0. Может, вам это и не кажется чем-то особенно чудесным, но когда математик видит такую таблицу, над головой у него ярко вспыхивает лампочка и определенное слово приходит ему на ум. Позвольте объяснить.
Имеется определенное семейство функций, которые страшно важны в математике, —
С принятой нами точки зрения — иллюстрирования функций двухколоночными таблицами типа таблицы 3.1 — можно нестрого определить показательную функцию следующим образом. Если взять набор значений аргумента так, чтобы при переходе от строки к строке они росли как результат регулярного
Рассмотрим пример. Возьмем правило «вычислить 5×5×5×5×… — выражение, содержащее
5 | |
---|---|
1 | 5 |
2 | 25 |
3 | 125 |
4 | 635 |