Читаем Простое начало. Как четыре закона физики формируют живой мир полностью

Как мы отметили в главе 3, описывая наматывание ДНК на гистоны, ДНК заряжена отрицательно, а значит, ее можно перемещать с помощью электрических полей: притягивать к положительно заряженным электродам и отталкивать от отрицательно заряженных2. В обычной воде кусочки ДНК движутся со сходной скоростью вне зависимости от размера. У крупных фрагментов заряд больше, а следовательно, их толкает большая электрическая сила, но и сопротивление жидкости они встречают большее. Физика масштабирования этих двух сил в зависимости от размера фрагмента сложна и неочевидна, но в итоге их эффекты почти нивелируют друг друга, и в негустой жидкости подвижность фрагмента слабо зависит от его длины. А вот в гелевых пластинах ситуация меняется. Длинные молекулярные цепочки пищевого желатина, например, спутываются и формируют пористую трехмерную сеть, пропускающую воду. Чтобы перемещаться по гелю, однонитевая ДНК (черная на рисунке) должна змейкой пробираться через поры – по-научному это называется рептацией. ДНК приходится то и дело извиваться, с чем короткие молекулы справляются гораздо быстрее, чем длинные.



Предсказуемая случайность броуновского движения – важнейшее условие для такого способа перемещения. Без нее ДНК застревала бы в геле, каким бы сильным ни было электрическое поле: попади концы нити в разные поры, молекула повисла бы на препятствии, как полотенце на веревке, и не смогла бы высвободиться. Но благодаря броуновскому движению ДНК постоянно колеблется и переориентируется, выбираясь из одного отверстия и проскальзывая сквозь другое. Статистическая прогнозируемость микроскопической случайности дает нам четко определенную и поддающуюся математической обработке скорость движения молекулы.

Итак, после амплификации ДНК с проставлением концевых меток и прогона фрагментов ДНК через гель под действием электрического поля[51] мы получаем возможность прочитать нуклеотидную последовательность. Все фрагменты одной и той же длины будут светиться одним цветом. Допустим, нити из 27 нуклеотидов заканчиваются модифицированным Ц, несущим, скажем, красную метку. А нити из 28 нуклеотидов заканчиваются модифицированным T с синей меткой. И так далее. Среди нитей из 27 нуклеотидов нет ни одной синей, поскольку все фрагменты этой длины, как точные копии друг друга, должны заканчиваться Ц, а все терминирующие Ц – красные. (Быть может, читая последние страницы, вы переживали за выпавшую из нашего поля зрения вторую исходную цепь ДНК, которая могла бы стать матрицей для второго набора молекулярных фрагментов. Не бойтесь: в секвенировании по Сэнгеру особый подбор праймеров заставляет ДНК-полимеразу работать только с одной из цепей двойной спирали, потому вторая вообще не реплицируется.)

Все фрагменты ДНК совместно попадают в тонкую трубку с гелем, проходя по которой, разделяются из-за разной скорости движения. Наблюдая за флуоресценцией проходящих через трубку точек, ученый фиксирует, например, вначале красный сигнал, затем синий, еще один синий, за ним зеленый и так далее, и интерпретирует их как последовательность ЦTTA+++++. Вот мы и прочитали ДНК.

Секвенирование по Сэнгеру и его вариации, которые совершенствовались по мере развития технологий, сегодня часто называют методами секвенирования первого поколения. В середине 1980-х они позволяли читать ежедневно около тысячи нуклеотидов, или, как принято говорить, оснований. Разницей между нуклеотидами и основаниями здесь можно пренебречь. (Но если быть точными, нуклеотид состоит из аденинового, цитозинового, гуанинового или тиминового азотистого основания, сахара под названием дезоксирибоза и нескольких атомов фосфора и кислорода, объединенных в фосфатную группу. Сахара соседних нуклеотидов связываются друг с другом через фосфатные группы, формируя нить ДНК.)

Чтобы установить последовательность всего генома, нужно виртуально соединить друг с другом все фрагменты. В 1982 году мы собрали полный геном бактериального вируса из 40 тысяч оснований, малый фрагмент которого в 1968 году прочитали Ву и Гилберт. Геном дрожжей S. cerevisiae (12 миллионов оснований) полностью секвенировали в 1996-м, а геном круглого червя C. elegans (100 миллионов оснований) – в 1998-м. Но самой желанной целью был, конечно же, геном Homo sapiens. Секвенирование по Сэнгеру в принципе могло бы справиться с этой задачей, но применение этого метода в отношении генома с миллиардами оснований представлялось огромным технологическим вызовом. Такая задача требовала усовершенствований не только в биохимии – связанных, например, с терминирующими нуклеотидами, – но и в инструментарии физической работы с ДНК: нужно было повышать скорость и надежность плавления и перемещения молекул, детекции световых сигналов и многого другого.

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука