В 1988 году Конгресс США одобрил выделение средств на проект «Геном человека», который планировали запустить в 1990-м и потратить на его реализацию 15 лет и 3 миллиарда долларов. (Для сравнения: в 1990 году совокупные расходы федерального бюджета США на исследования вне оборонного сектора составили около 23 миллиардов.) Подобно космической программе «Аполлон» в 1960-х, проект «Геном человека» ассоциировался с покорением новых рубежей – на сей раз во внутренней вселенной клетки. Государство осуществляло финансирование и управление проектом через Национальные институты здоровья и Министерство энергетики США, хотя и при значительном участии партнеров из других стран. В 1998 году финансируемая из частного капитала группа биотехнолога Крейга Вентера объявила, что планирует самостоятельно секвенировать геном человека, причем быстрее и дешевле. Это положило начало яростной гонке. Обе группы добились успеха и в 2001 году сообщили о прочтении 90 % генома человека. В 2003-м доля покрытия выросла до 99 %, что позволило заявить о выполнении задачи, по сути, на два года раньше намеченного срока. Но нужно было дочитать еще несколько фрагментов, которые не удалось секвенировать сразу из-за сложностей типа длинных нуклеотидных повторов, и к 2004 году геном был определен уже на 99,7 %3
.Вам, возможно, интересно, чей
геном тогда секвенировали. В обоих проектах геномы были коллективными: ДНК брали у нескольких человек, и разные прочитанные фрагменты от разных людей должны были дать общую для нашего вида картину. В итоге, однако, вышло так, что большая часть генетического материала принадлежала двум персонам: в проекте «Геном человека» – вроде бы анониму из города Буффало в штате Нью-Йорк, а в проекте Вентера – анониму, которым, как выяснилось позже, был… сам Крейг Вентер. Эти люди, разумеется, не представляют все человечество: чтобы изучить целый вид, нам нужно добыть его статистический портрет, то есть секвенировать гораздо больше человеческих геномов. Точно так же, если бы у меня обнаружили рак, мой врач захотел бы взглянуть на геном моих, а не средневидовых, злокачественных клеток. Чтобы преодолеть эти ограничения, требовались гораздо более быстрые и дешевые технологии. К счастью, их внедрение было уже не за горами.Читаем много слов одновременно
При общей стоимости 3 миллиарда долларов чтение каждой пары оснований в проекте «Геном человека» обходилось примерно в доллар. Это было поразительным достижением с учетом того, что еще не сменилось даже поколение, не знавшее структуру ДНК, но все же недостаточным, чтобы применять такую технологию рутинно. В начале XXI века появилось несколько новых хитроумных методов, разработанных отчасти благодаря госфинансированию инноваций в сфере секвенирования. В совокупности эти методы второго поколения называют еще высокопроизводительными, но чаще просто секвенированием нового поколения
4. В секвенировании первого поколения (по Сэнгеру) намноженные фрагменты читаются по очереди. Их смешивание обернулось бы катастрофой, поскольку мы потеряли бы уникальное соответствие между длиной оборванного субфрагмента и его меченым нуклеотидом-терминатором. В методы второго поколения изначально заложена параллельность: они позволяют анализировать множество фрагментов одновременно, а в ряде случаев даже читать цепи ДНК по мере их синтеза. Давайте познакомимся с несколькими новыми методами. Различаясь массой деталей, все они используют физические свойства ДНК и (или) связанных с ДНК материалов.Пиросеквенирование
появилось отчасти благодаря удивительным способностям светлячков5. Как мы знаем, ДНК-полимераза прикрепляет новые нуклеотиды к растущим нитям ДНК. Тщательно пересчитав атомы в составе свободного нуклеотида и в составе встроенного в нить, мы обнаружим, что соответствие между ними не полное. В ходе реакции пришивания нуклеотида к цепочке ДНК высвобождается крошечная молекула из двух атомов фосфора и семи атомов кислорода – пирофосфат. Особый белок в составе смеси для пиросеквенирования превращает пирофосфат в АТФ – энергетическую молекулу, которую клетки используют для разных операций. Одна из них – светоиспускающая химическая реакция, выполняемая белками люциферазами, которые расходуют АТФ в качестве топлива. (В переводе с латыни lucifer означает «несущий свет».) Такие организмы, как светлячки, жуки-щелкуны и светящиеся грибы, сами производят люциферазы. Как мы узнали, рассматривая в главе 2 зеленый флуоресцентный белок медузы, многообразие жизни предоставляет нам уйму инструментов, которые можно творчески приспособить для множества задач.