Следующим шагом было получение таблицы с разбиением населения на возрастные группы «от рождения до самой старости». Как утверждал Галлей, эта таблица предоставляет массу возможностей для использования в разных целях и дает «более точное представление о государстве и состоянии рода человеческого, чем что-либо иное из того, что я знаю». Например, в таблицах есть полезная информация о том, сколько в городе мужчин в возрасте, позволяющем нести воинскую службу, – 9000 человек, и Галлей утверждает, что эта оценка 9/34 населения может «быть использована и в других местностях».
Анализ Галлея наполняет понятие вероятности конкретным содержанием и в конечном счете подключает его к управлению риском. Галлей продемонстрировал, как его таблицы «показывают шансы», что человек любого заданного возраста «не умрет в течение года». В качестве иллюстрации он приводит возрастную группу 25-летних численностью 567 человек и группу 26-летних численностью 560 человек. Разница между двумя группами в 7 человек означала, что вероятность смерти 25-летнего в течение года составляла 7/567 или шансы 25-летнего дожить до 26 лет составляли 80 к 1. Пользуясь этой же процедурой вычитания числа людей более позднего возраста из числа людей заданного возраста и принимая последнее за базовое, из таблицы можно получить шансы людей 40-летнего возраста дожить до 47 лет; в городе Бреслау в описываемые таблицей годы они равнялись 5 1/2 к 1.
Галлей продолжил анализ. «Если возникнет вопрос, через какое число лет среднестатистический человек любого возраста имеет равные шансы умереть или остаться в живых, таблица готова дать ответ». Например, в городе 531 человек в возрасте 30 лет, и половина от этого числа равна 265. Нужно найти в таблице возрастную группу с такой численностью – это группа между 57 и 58 годами, и «можно держать пари с равными шансами… что у 30-летнего есть возможность прожить еще 27–28 лет».
Следующий уровень анализа Галлея имел наибольшее значение. Таблица могла быть использована для расчета стоимости страхования жизни для разных возрастов: «100 шансов к 1 за то, что 20-летний не умрет в течение года, и 38 к 1 за то же для человека в возрасте 50 лет». На основе шансов наступления смерти в течение каждого года таблица дает необходимую информацию для вычисления величины пожизненной ренты. По этому поводу Галлей пускается в детальный математический анализ величины разных видов ренты, включая ренту, рассчитанную не только на одну жизнь, но и на наследников до второго и третьего колена. При этом он предлагает использовать таблицу логарифмов, чтобы избавиться от «вульгарной арифметики» при выполнении множества вычислительных операций.
Этот раздел работы появился с большим опозданием. Первые сведения о понятии ренты относятся к 250 году после Рождества Христова, когда видный римский юрист Ульпиан разработал набор таблиц ожидаемой продолжительности жизни. Таблицы Ульпиана оставались последним словом науки в течение 1400 лет!
Работа Галлея подтолкнула к вычислению ожидаемой продолжительности жизни на континенте, но его собственное правительство в то время не обратило на его таблицы никакого внимания. Взяв голландский пример продажи пожизненной ренты для пополнения казны, английское правительство попыталось собрать миллион фунтов стерлингов за счет продажи пожизненной ренты, которая давала покупателю возможность вернуть вложенные в ренту деньги за 14 лет, причем контракты были одинаковы для всех независимо от возраста! В результате правительство понесло серьезные финансовые убытки. Тем не менее политика продажи ренты всем по одинаковой цене продолжалась до 1789 года. Предположение о том, что средняя ожидаемая продолжительность жизни от рождения составит 14 лет, было по крайней мере неким прогрессом по сравнению с прошлым: в 1540 году английское правительство продавало пожизненную ренту, которая «окупалась» за 7 лет, причем возраст покупателя не учитывался17.
После публикации таблиц продолжительности жизни Галлея в «Transactions» в 1693 году правительству и страховым компаниям понадобилось целое столетие, чтобы начать принимать в расчет ожидаемую на основе вероятностного анализа продолжительность жизни. Подобно его комете, таблицы Галлея оказались чем-то большим, чем вспышка, только однажды появляющаяся на небосклоне: его манипуляции с числами заложили основу для возникновения современной системы страхования жизни.
Как-то в 1637 году, когда Гранту было всего семнадцать лет, а Галлей еще не родился, Канопиус, ученый с острова Крит, сидел после полудня в своей комнате в Оксфорде и готовил себе чашку крепкого кофе. Считается, что Канопиус первым завез кофе в Англию; напиток быстро завоевал такую популярность, что по всему Лондону кофейни стали открываться сотнями.