Читаем Прозрение полностью

Любая материальная система, существуя во времени рано или поздно попадает в такое состояние, из которого она может перейти в одно из возможных состояний с некоторой вероятностью. Этим утверждается, что в Природе существуют вероятностные явления.

Рисунок 1 иллюстрирует сказанное (стрела времени направлена вправо). Материальная система пришла в состояние A, и далее однозначно переходит в состояние B.


Рис. 1. Возникновение точек бифуркации


Но из этого состояния система имеет возможность перейти в одно из состояний C (точка бифуркации) с различной вероятностью (P1 или P2). На рисунке она перешла в состояние C2. Это состояние опять оказалось точкой бифуркации, и из него возможен переход в одно из трех состояний D, опять определенными вероятностями (P3, P4 или P5) и так далее. Конечно, точки бифуркации возникают через некоторое время, в зависимости от конкретной системы и ее окружения. Если теперь перенести рассмотренную ситуацию в реальный сложный мир, где эти вероятностные переходы встречаются многократно, и не ограничивать время, то мы приходим к явлению необратимости естественных процессов в Природе. В примере с подбрасыванием монеты мы как раз имеем точку бифуркации.

Из этого рисунка видно, что беспорядок (хаос) нарастает, растет неопределенность реального состояния системы. Вероятность осуществления некоторого состояния после каждой точки бифуркации падает. Кроме того, вернуться назад во времени невозможно (необратимость!). Получается, что этот возврат придется делать при условии, что система перешла после точки бифуркации именно в то состояние, из которого мы хотим вернуться назад. Но ведь она могла перейти и в другое состояние. Математически обратный переход можно выразить формулой, но только с применением понятия условной вероятности. То есть попасть точно назад, нет никакой гарантии. Это и есть закон о необратимости природных явлений. Второй закон термодинамики является частным случаем этого, более общего закона.

Теперь мы видим объяснение нашего примера с возвращением в начало пути, приведенного выше, без термодинамики (где мы «попали в ловушку»).

Приведем еще аналогию возникновения этих разветвлений из обыденной жизни. Допустим, мы путешествуем по некоторой местности. Идем по тропинке, и нам встречается развилка. И нет информации – куда свернуть? Пошли наугад, направо. Идем дальше, встречается перекресток, опять та же проблема, какую дорогу выбрать? И если это «путешествие» продолжить, то неопределенность нашего местонахождения возрастает. Особенно часто такая ситуация возникает, когда теряются дети. В какую сторону ребенок мог пойти?!

Достаточно принять эту аксиому, то далее, известная формула Клода Шеннона для информационной энтропии может быть выведена строго математически (см. приложение).

Формула Шеннона:



где S – энтропия, – вероятности возможных состояний системы i=1, 2… N) в каждый момент времени,

k и a – произвольные постоянные.

В теории информации k=1; a=2.

Но вернемся в термодинамику. Нет ли там такой же формулы? Случайных, необратимых явлений там сколько угодно. Да и сама термодинамическая система состоит из множества хаотически (случайно) движущихся частиц. В термодинамике эта формула аналогична, но k – постоянная Больцмана, a – основание натуральных логарифмов. Людвиг Больцман вывел формулу для термодинамической энтропии раньше К. Шеннона (на 60 лет), но последний, получил ее заново и для более общего случая. Это подтверждает универсальный характер понятия энтропии. Нет принципиальной разницы между информационной и термодинамической энтропией.

Но при выводе формулы Больцмана использовалось понятие изолированной термодинамической системы, а при выводе формулы Шеннона такого ограничения не накладывалось. Это несоответствие кажущееся и связано с тем, что термодинамика исторически всегда была связана с системами ограниченными по массе и объему. Это позволяло делать конкретные выводы и практические расчеты. «Анализ процессов, происходящих в изолированной системе, представляет интерес в большой мере потому, что в пределе любую изолированную систему и окружающую среду можно мысленно рассматривать как единую изолированную систему» [10]. Поэтому не приходится сомневаться в том, что необратимость присутствует не только в термодинамических системах, а и во всех других, где применима приведенная выше аксиома о точках бифуркации.

Перейти на страницу:

Похожие книги

100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Прочая научная литература / Образование и наука / Научная литература / Путешествия и география
Эволюция: Триумф идеи
Эволюция: Триумф идеи

Один из лучших научных журналистов нашего времени со свойственными ему основательностью, доходчивостью и неизменным СЋРјРѕСЂРѕРј дает полный РѕР±Р·ор теории эволюции Чарльза Дарвина в свете сегодняшних представлений. Что стояло за идеями великого человека, мучительно прокладывавшего путь новых знаний в консервативном обществе? Почему по сей день не прекращаются СЃРїРѕСЂС‹ о происхождении жизни и человека на Земле? Как биологи-эволюционисты выдвигают и проверяют СЃРІРѕРё гипотезы и почему категорически не РјРѕРіСѓС' согласиться с доводами креационистов? Р' поисках ответа на эти РІРѕРїСЂРѕСЃС‹ читатель делает множество поразительных открытий о жизни животных, птиц и насекомых, заставляющих задуматься о людских нравах и Р­РўР

Карл Циммер

Научная литература / Биология / Образование и наука