Рисунок 1 иллюстрирует сказанное (стрела времени направлена вправо). Материальная система пришла в состояние A, и далее однозначно переходит в состояние B.
Рис. 1. Возникновение точек бифуркации
Но из этого состояния система имеет возможность перейти в одно из состояний C (точка бифуркации) с различной вероятностью (P1
или P2). На рисунке она перешла в состояние C2. Это состояние опять оказалось точкой бифуркации, и из него возможен переход в одно из трех состояний D, опять определенными вероятностями (P3, P4 или P5) и так далее. Конечно, точки бифуркации возникают через некоторое время, в зависимости от конкретной системы и ее окружения. Если теперь перенести рассмотренную ситуацию в реальный сложный мир, где эти вероятностные переходы встречаются многократно, и не ограничивать время, то мы приходим к явлению необратимости естественных процессов в Природе. В примере с подбрасыванием монеты мы как раз имеем точку бифуркации.Из этого рисунка видно, что беспорядок (хаос) нарастает, растет неопределенность реального состояния системы. Вероятность осуществления некоторого состояния после каждой точки бифуркации падает. Кроме того,
Теперь мы видим объяснение нашего примера с возвращением в начало пути, приведенного выше, без термодинамики (где мы «попали в ловушку»).
Приведем еще аналогию возникновения этих разветвлений из обыденной жизни. Допустим, мы путешествуем по некоторой местности. Идем по тропинке, и нам встречается развилка. И нет информации – куда свернуть? Пошли наугад, направо. Идем дальше, встречается перекресток, опять та же проблема, какую дорогу выбрать? И если это «путешествие» продолжить, то неопределенность нашего местонахождения возрастает. Особенно часто такая ситуация возникает, когда теряются дети. В какую сторону ребенок мог пойти?!
Достаточно принять эту аксиому, то далее, известная формула Клода Шеннона для информационной энтропии может быть выведена строго математически (см. приложение).
Формула Шеннона:
где
В теории информации
Но вернемся в термодинамику. Нет ли там такой же формулы? Случайных, необратимых явлений там сколько угодно. Да и сама термодинамическая система состоит из множества хаотически (случайно) движущихся частиц. В термодинамике эта формула аналогична, но k – постоянная Больцмана, a – основание натуральных логарифмов. Людвиг Больцман вывел формулу для термодинамической энтропии раньше К. Шеннона (на 60 лет), но последний, получил ее заново и для более общего случая. Это подтверждает универсальный характер понятия энтропии. Нет принципиальной разницы между информационной и термодинамической энтропией.
Но при выводе формулы Больцмана использовалось понятие изолированной термодинамической системы, а при выводе формулы Шеннона такого ограничения не накладывалось. Это несоответствие кажущееся и связано с тем, что термодинамика исторически всегда была связана с системами ограниченными по массе и объему. Это позволяло делать конкретные выводы и практические расчеты.