Опыт показывает, что многие люди не знают точного определения понятия «вероятность». Для них в приложении приведен простой пример расчета энтропии по приведенной выше формуле. Вероятность меняется от нуля до единицы (достоверное событие). В обиходе иногда принимают вероятность от нуля до ста процентов.
Вывод этой формулы сделан при учете только самых простых и общих предпосылок (рис. 1). При этом не вводились никакие энергетические ограничения. Поэтому из этой формулы следует, что энтропия всегда растет, в любых материальных системах
. Причем расчет по этой формуле показывает, что скорость возрастания энтропии тем выше, чем ближе друг к другу вероятности перехода из точки бифуркации в возможные состояния. Например, – приВзглянем ещё раз на формулу Шеннона. В каких единицах измеряется энтропия? Вероятности
Теперь ясно, формула пригодна для материальных систем любой сущности (живая и неживая природа, человеческие сообщества, любые машины, кибернетические устройства и т.п.).
Но исторически сложилось так, что люди всегда видели в природе явления, которые как будто не подчиняются этому закону. Это, прежде всего, изобретения, технологические приемы в обычной текущей жизни людей. Даже, например, изобретение колеса или способа приготовления пива были явным усложнением простых явлений природы. И тут появляются в девятнадцатом веке тепловые машины, а с ними термодинамика. А с ней и ВТОРОЙ ЗАКОН! Он вызвал большую неразбериху в науке и множество яростных споров, которые со временем поутихли, кроме одной совершенно непонятной проблемы. Дело в том, что появившаяся в это же время теория эволюции Дарвина явно, как казалось, нарушала второй закон термодинамики. Налицо был колоссальный процесс усложнения, упорядочивания материи.
Этот, «второй закон» связан только с термодинамикой, с термодинамическими системами. Его нельзя распространять на всю остальную природу. В том числе на биологические системы, и на эволюцию. Как же быть с энтропией? Многие ученые пытались найти в природе какое-нибудь явление или процесс, который бы шел с самопроизвольным снижением энтропии. Особенно много времени и энергии потратил на эти поиски И.Р. Пригожин. Он нашел, что флуктуации – случайные отклонения некой величины, характеризующей систему из большого числа единиц, от ее среднего значения могут приводить к локальному снижению энтропии. Но ничего конструктивного, объяснительного эта находка для эволюции не дала. Её процесс явно закономерен и далек от небольшого влияния флуктуаций. Были и другие попытки, но и они не принесли необходимого результата.
2. Альтернатива закону о необратимости явлений реального мира
Но, видимо, в Природе существует какой-то процесс, который компенсирует естественный рост энтропии. Не изменяются атомы и молекулы; например, капля воды, только что полученная в химической реакции неотличима от капли, поднятой со дна Тихого океана из самого глубокого места. Возраст последней может оказаться равным многим миллиардам лет. Растут кристаллы, произошла эволюция Жизни, идет технический прогресс. Все эти процессы происходят с упорядочением, с усложнением систем. Но применима ли для них аксиома о точках бифуркации? Конечно, применима, но только в случаях, когда присутствует отличная от единицы вероятность перехода системы в будущие состояния.