Читаем Психология критического мышления полностью

Для расчета вероятности выпадения трех орлов в трех попытках вам надо нарисовать дерево с тремя рядами «узлов», причем из каждого узла исходят две «ветви».




В этом примере нас интересует вероятность выпадения трех орлов подряд при условии, что монета «честная». Посмотрите на столбец, озаглавленный «исход», и найдите исход ООО. Поскольку это единственный исход с тремя орлами, перемножьте вероятности вдоль ветви ООО (обведенной на диаграмме) и вы получите 0,5 х 0,5 х 0,5 = 0,125. Вероятность 0,125 означает, что если монета «честная», то в среднем она будет падать орлом вверх три раза подряд в 12,5 % случаев. Поскольку эта вероятность невелика, то при выпадении трех орлов подряд большинство людей начинает подозревать, что монета «с секретом».

Для расчета вероятности выпадения четырех орлов в четырех попытках добавьте к дереву дополнительные ветви.




Вероятность выпадения четырех орлов равна 0,5 х 0,5 х 0,5 х 0,5 = 0,0625, или 6,25 %. Как вы уже знаете, математически она равна 0,54; т. е. умножить число само на себя четыре раза — это то же самое, что возвести его в четвертую степень. Если вы будете считать на калькуляторе, где есть операция возведения в степень, то вы получите тот же самый ответ — 0,0625. Хотя такой исход возможен и когда-нибудь произойдет, он маловероятен. На самом деле он настолько неправдоподобен и необычен, что многие сказали бы, что человек с бегающими глазками, наверное, жульничает. Несомненно, что при выпадении пятого орла подряд разумно будет заключить, что вы имеете дело с мошенником. Для большинства научных целей событие считается «необычным», если его появление ожидается с вероятностью менее 5 %. (На языке теории вероятностей это записывается так: р ‹ 0,05.)

Давайте оставим искусственный пример с монетой и применим ту же логику в более полезном контексте. Я уверена, что любой студент когда-либо сталкивался с тестами с выбором вариантов, в которых нужно выбирать из предложенных вариантов правильные ответы. В большинстве таких тестов на каждый вопрос предлагается пять вариантов ответов, из которых правилен только один. Предположим, что вопросы настолько трудны, что вы можете только случайно угадать правильный ответ. Какова вероятность правильного угадывания при ответе на первый вопрос? Если вы понятия не имеете, какой из вариантов является правильным ответом, то вы с одинаковой вероятностью можете выбрать любой из пяти вариантов, предполагая, что любой из них может оказаться правильным. Поскольку сумма вероятностей выбора всех вариантов должна быть равна единице, то вероятность выбора каждого из вариантов при равновероятности всех вариантов равна 0,20. Один из вариантов правильный, а остальные — неправильные, поэтому вероятность выбора правильного варианта равна 0,20. Древовидная диаграмма этой ситуации изображена ниже.




Какова вероятность правильно угадать ответы на первые два вопроса теста? Нам придется добавить новые ветви к дереву, которое вскоре станет очень густым. Чтобы сэкономить место и упростить вычисления, можно представить все неправильные варианты в виде одной ветви, обозначенной «неправильные». Вероятность ошибиться при ответе на один вопрос равна 0,8.




Вероятность правильно угадать ответы на два вопроса равна 0,2 х 0,2 = 0,04. То есть случайно это может произойти только в 4 % попыток. Допустим, что мы расширим наш пример до трех вопросов. Я не буду рисовать дерево, но вы должны уже понять, что вероятность равна 0,2 х 0,2 х 0,2 = 0,008. Это настолько необычное событие, что оно может произойти случайно менее чем в 1 % попыток. Что вы подумаете о человеке, которому удалось правильно ответить на все три вопроса? Большинство людей (а преподаватели тоже люди) заключит, что студент не выбирал ответы наугад, а действительно что-то знал. Конечно, не исключено, что ему просто повезло, но это чрезвычайно маловероятно. Таким образом, мы приходим к выводу, что полученный результат не может объясняться только удачей.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже