Другое наблюдение. Никогда не бывает, чтобы результатом бессознательной работы было полностью проведённое и достаточно длинное вычисление, даже если его правила заранее установлены. Казалось бы, подсознание должно быть особенно расположено к совершенно механической работе. Если, например, вечером подумать о сомножителях, то можно было бы надеяться, что при пробуждении будешь знать произведение или что алгебраическое вычисление, например проверка, могло бы производиться бессознательно. Но опыт опровергает это предположение. Единственное, что получаешь при озарении, которое является результатом бессознательной работы, — это отправные точки для подобных вычислений; что касается самих вычислений, то их надо производить во время второго периода сознательной работы, следующего за озарением; тогда проверяют результаты и выводят из них следствия. Правила вычислений строги и сложны, они требуют дисциплины, внимания и воли и, следовательно, сознания. В подсознании же царит, напротив, то, что я называю свободой, если можно назвать этим словом простое отсутствие дисциплины и беспорядок, рождённый случаем. Но только этот беспорядок рождает неожиданные комбинации.
Я сделаю последнее замечание; когда я выше излагал вам некоторые личные наблюдения, я говорил о бессонной ночи, во время которой я работал как бы против своей воли; такие случаи часты и необязательно, чтобы причиной такой ненормальной мозговой активности было физическое возбуждение, как было в случае, о котором я говорил. Кажется, что в этих случаях присутствуешь при своей собственной бессознательной работе, которая стала частично ощутимой для сверхвозбужденного сознания и которая не изменила из-за этого своей природы. При этом начинаешь смутно различать два механизма или, если угодно, два метода работы этих двух «я». И психологические наблюдения, которые я мог при этом сделать, как мне кажется, подтверждают в основных чертах те взгляды, которые я вам здесь изложил.
Эти взгляды несомненно нуждаются в проверке, так как несмотря ни на что остаются гипотетичными; вопрос, однако, столь интересен, что я не раскаиваюсь в том, что изложил их вам.
Послесловие
Жак Адамар
Автор этого единственного в своём роде произведения прожил долгую и плодотворную жизнь.
Жак Соломон Адамар родился в Версале в 1865 г. Его блестящие и разносторонние способности проявились рано. На вступительных экзаменах в Политехническую школу в Париже он поставил рекорд, набрав большее число баллов, чем кто-либо из экзаменовавшихся туда до него
Ведя интенсивную работу в области математики, Адамар принимал участие и в общественной жизни своей страны. Он был другом Советского Союза, несколько раз был гостем советских математиков, в годы после второй мировой войны, несмотря на преклонный возраст, принимал участие в движении сторонников мира. Умер Адамар в Париже в 1963 г.
Ввиду угрозы немецкой оккупации Адамар был вынужден в 1940 г. уехать в США. Там в 1945 г. впервые была издана на английском языке его книга о психологии научного, прежде всего математического, творчества. Наш перевод сделан с французского издания 1959 г., которое автор просмотрел и расширил.
С тех пор, как была написана книга Адамара, интерес к рассматриваемым в ней проблемам неуклонно возрастал. Ещё быстрее росла литература, преимущественно в виде журнальных статей, по психологии научного творчества. И всё-таки книга Адамара остаётся и на сегодня явлением уникальным благодаря широте подхода её автора и ценности использованных в ней материалов, в том числе фактов из научной практики самого Адамара.
Адамар много раз обращается в своей книге к небольшому, но исключительно ценному этюду Анри Пуанкаре (1854–1912), знаменитого французского математика, механика, физика. Было естественно дать этот этюд здесь полностью, в виде приложения.
Вряд ли надо доказывать, что, учитывая характер и недостаточную разработанность сложных вопросов психологии творчества, в частности научного, к взглядам и выводам Адамара и Пуанкаре надо отнестись критически. Это не последнее, а почти что первое слово науки в этой трудной, но увлекательной области. И то, как подходят к анализу её проблем два крупных математика, поучительно, интересно и может служить отправным пунктом для дальнейших исследований.
Именной указатель
Абеляр 65
Августин 31
Адамар, Жак Соломон 3, 57, 104, 108, 131, 148, 149
Ампер 57, 124
Антелл, Джеймс 70
Аппель 15
Аристотель 41, 68
Асгейрсон 52
Б
аль, Юлиус 85Бергсон 5
Беркли 66, 88
Бернар, Клод 48, 51