Эту же задачу можно решить и иначе. Если высота спутника не меняется, то это значит, что его центростремительное ускорение в точности равно ускорению земного тяготения. (Это вовсе не означает, как иногда пишут, что центробежная сила «уравновешивает» вес спутника.)
Следовательно,
и
как и ранее.
Очевидно; на высоте
Но так как то
Это значит, что круговая скорость изменяется обратно пропорционально корню квадратному из расстояния до центра Земли.
0 | 7 910 |
255 | 7 760 |
1 000 | 7 360 |
1 670 | 7 040 |
35 800 | 3 080 |
384 000 (орбита Луны) | 1 010 |
Б. Период обращения спутника
Время, за которое спутник совершит один полный оборот вокруг Земли, равно, очевидно, длине пути за оборот, деленной на круговую скорость:
(
Но вследствие чего
Подстановка значений R и g0 дает следующую довольно точную для приближенных расчетов формулу:
Высота Н в км | Период обращения спутника Т в сек |
---|---|
0 | 5 070 (1,4 часа) |
255 | 5 400 (1,5 часа) |
1 000 | 6 340 (1,76 часа) |
1 670 | 7 200 (2 часа) |
35 800 | 86 400 (24 часа) |
384 000 | 2,36·106 (27,3 суток) |
III. СКОРОСТЬ ОТРЫВА (ПАРАБОЛИЧЕСКАЯ СКОРОСТЬ)
Скорость отрыва (или параболическая скорость) есть та скорость, которая должна быть сообщена телу у поверхности Земли, чтобы полностью преодолеть поле земного тяготения — удалить тело в бесконечность.
Величина скорости отрыва Vотр. определяется тем, что кинетическая энергия тела должна в этом случае в точности равняться работе преодоления поля тяготения; с помощью высшей математики получаем:
то есть работа полного преодоления поля земного тяготения равна работе поднятия тела при постоянном ускорении силы тяжести, равном его значению у земной поверхности
Так как √g0R есть круговая скорость, то скорость отрыва
Высота Н в км | Скорость отрыва Уотр. в км/сек |
---|---|
0 | 11,2 |
300 | 10,9 |
1 000 | 10,4 |
1 670 | 9,9 |
35 800 | 4,3 |
384 000 | 1,42 |
IV. ОБЩИЙ ЗАКОН ДВИЖЕНИЯ КОСМИЧЕСКОГО КОРАБЛЯ В ПОЛЕ ТЯГОТЕНИЯ ОДНОГО НЕБЕСНОГО ТЕЛА
Примеры движения по кругу или по параболе, о которых шла речь выше, являются лишь частными случаями движения тела в поле тяготения небесного тела большой массы. Как известно из небесной механики, в общем случае орбитой такого движения является одна из кривых второго порядка (так называемых конических сечений): круг, эллипс, парабола или гипербола. Общий закон этого движения дается следующей формулой (так называемое уравнение живых сил, упрощенное для случая космического корабля, то есть тела небольшой массы):
или где
Как видно из формул, характер орбиты зависит лишь от величины, но не направления скорости
а)
орбита — парабола;
б)
в)
частный случай эллиптической орбиты — круговая;
г) а < ◯,
По формуле откуда
так как а < ◯, то
V. ЭЛЛИПТИЧЕСКИЕ ОРБИТЫ
Наиболее важными для астронавтики являются эллиптические орбиты, по которым будут двигаться не только все новые искусственные спутники Земли, но чаще всего и космические корабли. Полет по гиперболической орбите — дело более отдаленного будущего (советская космическая ракета, запущенная 2 января 1959 года, летела в поле земного тяготения по гиперболе, а вокруг Солнца движется по эллипсу).
Формулы расчета эллиптических орбит могут быть получены из приведенного выше уравнения живых сил путем упрощений;
для движения вокруг Солнца:
где
для движения вокруг Земли:
где
Василий Кузьмич Фетисов , Евгений Ильич Ильин , Ирина Анатольевна Михайлова , Константин Никандрович Фарутин , Михаил Евграфович Салтыков-Щедрин , Софья Борисовна Радзиевская
Приключения / Публицистика / Детская литература / Детская образовательная литература / Природа и животные / Книги Для Детей