НЕЕВКЛИДОВЫ ПРОСТРАНСТВА
Геометрия, которой мы пользуемся до сегодняшнего дня, была описана греческим математиком
В пятой аксиоме Евклида утверждается, что параллельные прямые никогда не пересекаются. Включение этой аксиомы в число основных вызывало вопросы у математиков: они были убеждены в том, что ее можно вывести из четырех предыдущих. Однако все попытки сделать это не увенчались успехом. В конце концов было решено попробовать другой путь: изменить пятую аксиому и доказать, что это ведет к противоречию. Но, к удивлению математиков, новые геометрии с измененной пятой аксиомой не были противоречивыми. В конце концов ученые вынуждены были признать, что евклидова геометрия не является единственно возможной.
Новые геометрии могут рассматриваться как обобщение понятия расстояния. Вспомним, что длина стрелки вычисляется суммированием квадратов длин сторон и извлечением квадратного корня:
Но мы можем определить расстояние и по-другому. Например, общая теория относительности определяет расстояние в пространстве и во времени. Если с
— скорость света, a d — евклидово расстояние, то пространственно-временное расстояние выражается следующим образом:Неевклидовы геометрии больше подошли для описания действительности, чем наш здравый смысл.
* * *
На самом деле, в одном измерении это просто а, которое можно выразить следующим образом:
Рассмотрев эти три выражения, можно сделать вывод, что для получения длины в еще одном измерении нужно прибавить квадрат следующей координаты. Таким образом, в
Это выражение легко распространяется на любое число измерений. Таким образом, мы получили формулу для расчета длины стрелки в пространстве с любым количеством измерений. И это потрясающее математическое достижение.
Понятие объема можно определить как количество пространства, которое занимает объект. Можно ли говорить об объемах в других измерениях? Например, подошло бы наше понятие объема обитателям Вселенной из пяти измерений?
Прежде чем анализировать пространства с размерностью больше трех, рассмотрим меньшее количество измерений.
В нашей повседневной действительности объем измеряется в кубических метрах (м3
), кубических сантиметрах (см3) или в целом в любой единице измерения расстояния, возведенной в куб. Любопытно, что показатель степени единицы измерения объема совпадает с числом измерений пространства, в котором мы живем.Теперь возьмем другую знакомую величину — площадь. Она измеряется в единицах измерения длины в квадрате, обычно в квадратных метрах, или м2
. Площадь используется для измерения количества пространства, которое занимает плоская, то есть двумерная фигура. Итак, мы можем трактовать площадь как вид объема для двумерных объектов. Точно так же длина соответствует объему одномерных объектов.Теперь вообразим, что в нашем мире только два измерения. То есть мы существа, ограниченные площадью, как муравьи. В этом мире мы не знали бы понятия объема, а только понятие плоскости. Для нас двумерным эквивалентом объема была бы площадь.
* * *