Читаем Путешествие по Карликании и Аль-Джебре полностью

Значит, Икс равен двенадцати восьмым, или


x = 3/2.


Выходит, что три экскаватора, работая вместе, выроют котлован за полтора часа.

Неловко об этом говорить, но мне было очень приятно, когда маска с Икса упала и он стал нас благодарить.

Карликан заторопился к своим экскаваторам, а Составитель тут же предложил решить ещё одну задачу, точно такую же, но… Что это за «но», ты сейчас поймёшь.

— Признаться, надоели мне такие уравнения, — сказал Составитель, — слишком часто приходится их составлять. Везде идут стройки, везде роют котлованы. Пора бы уж сразу найти один ответ на все подобные вопросы. Ведь мы как-никак живём в Аль-Джебре…

— И потому должны упрощать и обобщать, — докончил Сева.

— Уж конечно! Не хотите ли вместе со мной вывести такое единое решение?

Мы молча кивнули, и Составитель начал:

— Так как экскаваторы бывают разных мощностей, то пусть первый из них роет котлован за а часов, второй — за b часов, ну а третий, допустим, за с часов. Спрашивается, за сколько часов выроют они котлован, если будут работать вместе?

— По-моему, — сказал я, — решение должно быть таким же, как и в предыдущей задаче. Только та задача была в числах, а мы её изобразим буквами. Снова примем за Икс число часов, необходимое, чтобы закончить работу, а всю работу — за единицу.

— Так-так-так, — подбадривал Составитель.

Теперь рассуждала Таня:

— Очевидно, первый экскаватор совершит за час 1/a часть работы. Это, наверное, читается так: одну атую часть работы?

— Хорошо, хорошо.

— Тогда второй, — сказал Сева, — за час совершит одну бэтую: 1/b, а третий одну цэтую: 1/с часть работы. А все вместе они выроют за час сумму этих дробей:


1/a + 1/b + 1/c.


Теперь нетрудно составить уравнение, — ведь за икс часов они выполняют работу в икс раз большую:


x(1/a + 1/b + 1/c).


И всё это должно быть равно единице:


x(1/a+ 1/b + 1/c) = 1.



— Вот вы и составили уравнение, — похвалил Составитель.

— Теперь приведём подобные, — сказал Сева. Вспомнил, наверное, как он недавно оплошал.

— Нет, — возразил Составитель, — здесь я не вижу никаких подобных. Просто надо сложить три дроби, которые стоят в скобках. Для этого приведём их к общему знаменателю и введём дополнительные множители у каждой дроби.

— Это мы знаем, — вмешалась Таня и тут же написала:


1/a + 1/b + 1/c = bc/abc + ac/abc + ab/abc = (bc + ac + ab)/abc


или


x((bc + ac + ab)/abc)  = 1


— Вот какой огромный коэффициент оказался у Икса! — заметил Сева. — С таким провожатым ничего не страшно.

— Что же остаётся сделать, чтобы найти Икс? — спросил Составитель.

— Разделить правую часть уравнения — единицу — на этот коэффициент, — ответила Таня.


x = 1:((bc + ac + ab)/abc)


С этим она справилась быстро;


x = abc/(bc + ac + ab)



Икс подошёл к Тане и поклонился, помахав вместо шляпы чёрной маской. Д’Артаньян, да и только!

— Вот вам и уравнение, пригодное для любых трёх экскаваторов, — сказал напоследок Составитель. — Может быть, хотите проверить?

Тут уж пришёл на Севину улицу праздник. Подставлять — его любимое занятие. Вместо а, b и с он подставил числа из предыдущей задачи — 4, 3 и 12:


(4 • 3 • 12)/(3 • 12 + 4 • 12 + 4 • 3) = 144/96


Сократил дробь и получил:


x = 3/2


— Упрощение и обобщение! Упрощение и обобщение! — приговаривал он, похлопывая себя по животу, словно только что съел что-нибудь вкусное.

Потом он придумал другие числа, и опять другие. И каждый раз, вычислив Икс, выкрикивал те же слова и снова хлопал себя по животу. Забыл он, что ли, что теперь в самый раз разобраться в задаче зелёного стручка и попробовать составить уравнение самим?! Пришлось обратиться к талисману. В последнее время он что-то совсем притих — лежит себе в кармане и помалкивает. Видно, не считает нужным вмешиваться. Я вынул его и поднёс к самому Севиному носу. Увидев стручок, Сева снова хлопнул себя — на этот раз по лбу, — и через несколько минут мы уже сидели на скамейке в Парке Науки и Отдыха.

Ну вот и всё пока. Наберись терпения и подожди следующего письма. Так всегда делают в журналах — прерывают рассказ на самом интересном месте и пишут: «Продолжение следует».


Олег.


Пончик на крючке

(Нулик — отряду РВТ)


Дорогие ребята! Вся наша школа страшно волнуется. Как-то вы раскроете тайну Чёрной Маски? Но больше всех переживаю я: может быть, сейчас вы уже расколдовываете моего незнакомца. Когда чего-нибудь ждёшь, время тянется ужасно медленно. Прямо не знаешь, куда деваться. Вот мы и решили обмануть время и чем-нибудь заняться.

А так как на уме у нас только составление уравнений, мы захотели сами придумать какую-нибудь задачу.

Эту мысль нам подсказал Пончик. Я с ним очень подружился. Не могу даже подумать, что скоро нам придётся расстаться!

Перейти на страницу:

Все книги серии Математическая трилогия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное