Вначале математики относились к ней довольно беззаботно. Говорили просто: есть такая штука – множество и есть свойство «быть элементом множества», которое обозначают символом, а раз так, то можно двигаться дальше[90]
. Но все это рано или поздно приводит к затруднениям.Первое множество, приходящее нам в голову, –
Дальше нам приходит в голову, что множества можно характеризовать через свойства их элементов. Например, множество четных чисел задают следующим образом:
Форма записи {
А дальше возникает уйма сложностей.
В начале XX века философ и математик Бертран Рассел[91]
размышлял о множествеЭто множество всех множеств, чьими элементами не являются они сами. Например, пустое множество удовлетворяет условию: ∅ ∉ ∅, потому что пустое множество не содержит элементов. Таким образом, ∅ ∈
Дальше Рассел задал роковой вопрос: входит ли множество
• Если ответ «да», то
• Если ответ «нет», то
Если
Одно из решений этого противоречия заключается в том, что множества
После работ Рассела подход к теории множеств претерпел существенные изменения. Четкие, ясные, применимые на практике правила закрепили, как формировать множества и какие операции с ними можно совершать[93]
. Определение множества и ∈ входит в свод правил непрямым образом. Мы не объясняем, что́ это; мы просто описываем, как оно себя проявляет. Мы говорим, что есть такие вещи, как множества, у них есть определенные свойства, а еще есть правила, по которым мы с ними работаем. Эти правила не позволили парадоксу Рассела вздыбить свою безобразную голову, и противоречий больше не возникало.Но вернемся к вопросу: сколько всего действительных чисел? Мы знаем, что мощность множества положительных целых чисел равна
Эту главную для Гильберта проблему разрешили неожиданным образом. Короткий, но исчерпывающий ответ звучит следующим образом: «Может быть и так, и этак».
Ну и ну! Математику ценят за то, что на все вопросы (обычно) находится точный ответ. «Может быть и так, и этак» разрушает определенность. Как с этим жить?
Работы Курта Гёделя (1940-х годов) и Пола Коэна (1960-х) показали, что общепринятые правила аксиоматической теории множеств неполны и потому не позволяют ответить на поставленный вопрос. Точнее говоря, эти математики продемонстрировали: нельзя ни доказать, ни опровергнуть то, что существуют множества, чья мощность больше, чем ℤ+
, но меньше, чем ℝ. Другими словами, можно принять или допущениеГлава 9
Числа Фибоначчи[95]
Начнем с укладки квадратов и домино. Вообразим длинную горизонтальную рамку размерами 1 × 10. Мы хотим полностью заполнить ее
Вопрос: сколькими способами это можно сделать?
Для удобства обозначим число вариантов
Не будем с места в карьер искать
Теперь разберемся с
Дальше: сколькими способами можно заполнить рамку 1 × 3? Первый вариант: три квадрата. Два других варианта: одна костяшка домино (две не влезут) и квадрат слева или справа. Итак,
Еще один шаг: возьмем рамку 1 × 4. На рисунке показаны все варианты заполнения: