Читаем Путеводитель для влюбленных в математику полностью

Мы нашли пять возможностей, но где гарантия, что мы ничего не упустили? Есть способ проверить себя.

В левом конце рамки может быть или квадрат, или костяшка домино. В верхнем ряду на рисунке – варианты, когда слева квадрат, в нижнем ряду – когда слева домино.

Допустим, слева квадрат. Оставшуюся часть нужно заполнить квадратами и домино. Другими словами, нужно заполнить рамку 1 × 3. Это дает 3 варианта, так как F3 = 3.

Если слева домино, размер оставшейся части 1 × 2, и заполнить ее можно двумя вариантами, так как F2 = 2.

Таким образом, у нас есть 3 + 2 = 5 вариантов, и мы удостоверились, что F4 = 5.

Теперь ваша очередь. Подумайте пару минут и найдите все варианты заполнения для рамки 1 × 5. Их немного. Решение – в конце главы. Можете отвлечься и подумать.

Вернемся к нашим квадратам. Хочется верить, что вы нашли 8 вариантов, так как есть 5 способов укладки, где слева квадрат, и еще 3 способа, где слева домино. Таким образом, F5 = 8.

Подытожим. Мы обозначили FN количество способов заполнения рамки 1 × n квадратами и костяшками домино. Нам необходимо найти F10. Вот что мы уже знаем:



Двигаемся дальше. Чему равно F6? Можно нарисовать все варианты, но это скучно. Лучше разобьем вопрос на две части. Сколькими способами можно заполнить рамку 1 × 6, если слева (a) квадрат и (b) костяшка домино? Хорошая новость: мы уже знаем ответ!

В первом случае нам остается пять квадратов, а мы знаем, что F5 = 8. Во втором случае нужно заполнить четыре квадрата; нам известно, что F4 = 5. Таким образом, F5 + F4 = 13.

Чему равно F7? Исходя из тех же соображений, F7 = F6 + F5 = 13 + 8 = 21. А как насчет F8? Очевидно, F8 = F7 + F6 = 21 + 13 = 34. И так далее. Мы обнаружили следующую взаимосвязь:

Fn = Fn – 1 + Fn – 2.

Еще несколько шагов – и мы найдем искомое число F10. Правильный ответ – в конце главы.

Числа Фибоначчи

Числа Фибоначчи – это последовательность:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Она выстраивается по таким правилам:

– первые два числа 1 и 1;

– каждое следующее число получаем сложением двух предыдущих.

Будем обозначать n-ный элемент последовательности Fn, начиная с нуля:

F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, …

Очередной элемент мы вычисляем по формуле:

Fn = Fn – 1 + Fn – 2.

Как мы видим, задача об укладке квадратов и домино привела нас к последовательности чисел Фибоначчи[96].

Сумма чисел Фибоначчи

Попробуем сложить первые несколько чисел Фибоначчи. Что мы можем сказать о сумме F0 + F1 + … + Fn для любого n? Давайте проделаем кое-какие вычисления и посмотрим, что получится.

Обратите внимание на результаты сложения внизу. Видите ли вы закономерность? Повремените немного, прежде чем двигаться дальше: будет лучше, если вы найдете ответ самостоятельно, а не прочтете уже готовое решение.



Хочется верить, вы увидели, что результаты суммирования, если к ним приплюсовать по единице, тоже выстраиваются в последовательность чисел Фибоначчи. Например, сложение чисел от F0 до F5 дает:

F0 + F1 + F2 + F3 + F4 + F5 = 1 + 1 + 2 + 3 + 5 + 8 = 20 = F7 – 1.

Сложение чисел от F0 до F6 дает 33, что на единицу меньше F8 = 34. Мы можем записать формулу для неотрицательных целых чисел n:

F0 + F1 + F2 + … + Fn = Fn + 2–1. (*)

Вероятно, лично вам достаточно будет увидеть, что формула (*) работает в дюжине случаев, чтобы вы поверили, что она верна, но математики жаждут доказательств. Мы рады представить вам два возможных доказательства того, что она верна для всех неотрицательных целых чисел n. Первое называется доказательством по индукции, второе – комбинаторным доказательством.

Доказательство по индукции

Формула (*) представляет собой бесконечно много формул в свернутом виде. Доказать, что (*) верно для конкретного значения n, скажем для n = 6, – простая арифметическая задача. Достаточно будет записать числа от F0 до F6 и сложить их:

F0 + F1 + … + F6 = 1 + 1 + 2 + 3 + 5 + 8 + 13 = 33.

Несложно увидеть, что F8 = 34, поэтому формула действует.

Перейдем к F7. Не будем тратить время и складывать все числа: мы уже знаем сумму вплоть до F6. Таким образом,

(F0 + F1 + … + F6) + F7 = 33 + 21 = 54.

Как и раньше, все сходится: F9 = 55.

Если сейчас мы начнем проверять, работает ли формула для n = 8, наши силы окончательно иссякнут. Но все же посмотрим, что мы уже знаем и что хотим выяснить:

F0 + F1 + … + F7 = F9–1.F0 + F1 + … + F7 + F8 =?

Воспользуемся предыдущим результатом:

(F0 + F1 + … + F7) + F8 = (F9– 1) + F8.

Мы, конечно, можем вычислить (F9 – 1) + F8 арифметически. Но так мы устанем еще больше. В то же время мы знаем, что F8 + F9 = F10. Таким образом, нам не нужно ничего высчитывать или заглядывать в таблицу чисел Фибоначчи:

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги