Теперь представим, что у нас появилась четвертая книга: D. Сколькими способами можно расставить книги теперь? Используем тот же метод. Для начала решим, какую книгу поставить слева; пусть на первый раз снова будет A. Оставшиеся три книги, как мы знаем, можно расставить шестью способами – только что мы обосновали, почему это так.
Точно так же есть шесть способов расположить оставшиеся книги, если слева будет B, C или D. В общей сложности получается 6 × 4 = 24 способа. Вот они:
Прежде чем мы перейдем к вопросу о произвольном количестве книг, давайте проанализируем вариант с пятью книгами: A, B, C, D и E. Как и раньше, вначале решаем, какую книгу поставить на крайнюю левую позицию. Если это A, у нас остается четыре книги. Сколькими способами можно их расставить? Мы уже выяснили, что таких способов 24. Еще 24 способа появляется, если на крайней левой позиции стоит B. То же самое для C, D и E. Итого в совокупности 24 + 24 + 24 + 24 + 24 = 120.
Каков был наш путь решения проблемы пяти книг? Есть пять вариантов, какую книгу поставить на крайнюю левую позицию. Когда она уже там, остаются четыре книги. Таким образом, количество вариантов для пяти книг в пять раз больше, чем количество вариантов для четырех. Давайте запишем это на математическом языке.
Пусть
Здесь
Как найти
Соответственно,
И что же мы имеем?
Теперь все ясно и с общим случаем. Количество способов расставить
Выражение (A) носит название
Если мы задались целью вычислить значение 10! самый простой путь – перемножить числа от 1 до 10 и получить:
10! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 3 628 800.
Но для подсчета 20! придется перемножать двадцать чисел. А вычислять 100! таким манером – просто каторжный труд. Есть ли какой-нибудь быстрый способ[101]
?Красивая, но никуда не годная с точки зрения реальных вычислений идея состоит в том, чтобы определить 10! через 9!. Это же «проще простого»:
10! = 10 × (9 × 8 × … × 3 × 2 × 1) = 10 × 9!.
Для произвольного значения
Иными словами,
Формула (B) чудесна, но она мало помогает при вычислении, скажем, 20!. Мы должны вычислить 19! и умножить его на 20. Само собой, она подсказывает, как вычислить 19!: для этого надо посчитать 18!. А затем умножить на 19. В конце концов нам придется перемножать все целые числа от 1 до 20.
Вот бы найти способ побыстрее… Есть ли основания предполагать, что мы можем ускорить вычисления? Да, и про это нам говорят
1 + 2 + 3 + … +
Например, пятое треугольное число равно 1 + 2 + 3 + 4 + 5 = 15. Обозначим
Например:
Это похоже на факториал, но со сложением вместо умножения. Есть ли способ посчитать
Есть хорошая новость: да, такое возможно, и доказательство выглядит просто и элегантно. Запишем сумму первых десяти целых положительных чисел в возрастающем и убывающем порядке:
Если мы сложим все эти 20 чисел, результат будет равен удвоенному
В нижней строке все элементы равны 11, потому ответ прост[103]
: 11 × 10 = 110. Теперь поделим этот результат пополам:Как мы будем действовать в общем случае? Для вычисления
В нижней строке
Для вычисления
(100 × 101) / 2 = 5050.
Вот и ответ.