Рассмотрим случай
Первая костяшка домино может занимать следующие позиции:
Первая колонка демонстрирует случай, когда костяшка находится на первой позиции, вторая – когда костяшка на второй, и т. д.
Сколько вариантов в каждой колонке?
В первой колонке – пять вариантов. Если отбросить домино слева, мы получим ровно
Во второй колонке – три варианта. Отбросим домино и квадрат слева. Мы получим
Аналогично для других колонок. Вот что мы обнаружили:
Таким образом, количество способов замостить квадратами и домино (хотя бы одной костяшкой) прямоугольную рамку 1 × 6 равно
Вывод:
Рассмотрим общий случай. Нам дана рамка длиной
Если
Если поставить слагаемые в обратном порядке, мы получим левую часть выражения (*). Таким образом, мы нашли второй ответ на поставленный вопрос:
Итак, у нас есть два ответа на вопрос. Величины, полученные с помощью двух выведенных нами формул, совпадают, и тождество (*) доказано.
Сложение двух следующих друг за другом чисел Фибоначчи дает очередное число Фибоначчи. В этом разделе мы затронем вопрос поинтереснее: что будет, если мы поделим число Фибоначчи на предшествующее ему в ряду? Посчитаем соотношение
Чем больше становятся числа Фибоначчи, тем ближе соотношение
Это число – вы будете удивлены – достаточно известное, и если вы введете его в поисковую систему, вывалится уйма страниц о
Соотношение соседних чисел Фибоначчи не одинаково. Однако оно почти одинаково, если числа достаточно велики. Давайте найдем формулу для числа 1,61803 и для этого на время будем считать, что все соотношения одинаковы. Введем обозначение
Это значит, что
Но мы же знаем, что
Если мы поделим обе части на
Оно имеет два решения:
Соотношение должно быть положительным. И вот мы получили знакомое нам число. Обычно для обозначения золотого сечения используют греческую букву ϕ (фи):
Мы уже приметили, что соотношение соседних чисел Фибоначчи приближается (стремится) к ϕ. Это замечательно. Это дает нам еще один способ вычислять приблизительные значения чисел Фибоначчи.
Последовательность чисел Фибоначчи – это ряд
Здесь
Для больших значений
Насколько хороша эта формула? Настало время новых подсчетов!
Обратите внимание: если округлить
Если вы не хотите утруждать себя округлениями до целого числа, то формула, названная в честь Жака Бине[100]
, даст вам точное значение:Глава 10
Факториал!
Сколькими способами можно расставить ваши книги на полке? Разумеется, это зависит от того, сколько у вас книг. Начнем с простейшего примера. Допустим, ваша библиотека насчитывает всего три книги с незамысловатыми названиями A, B и C.
Вначале решим, какую книгу поставить с левого края. Пусть это будет A. В таком случае остается всего два варианта расположения книг на полке: ABC и ACB. То есть, когда A стоит слева, существует две комбинации.
Если поставить на левую позицию книгу B, тогда снова возможны два варианта: BAC и BCA. Если слева стоит книга C, появляются еще две комбинации: CAB и CBA.
В общей сложности есть шесть вариантов расстановки книг:
ABC, ACB, BAC, BCA, CAB, CBA.