Читаем Путеводитель для влюбленных в математику полностью

Этот вопрос в 1637 году заинтересовал Пьера Ферма. На полях «Арифметики» Диофанта он сформулировал следующее утверждение: уравнение aⁿ + bⁿ = cⁿ не имеет нетривиальных целочисленных решений при n ≥ 3. Он записал по-латыни знаменитые слова:

Невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него[158].

Это утверждение известно как великая теорема Ферма, хотя сомнительно, что Ферма мог доказать ее. Потребовалось три столетия, прежде чем Эндрю Уайлс[159] нашел доказательство и опубликовал его в середине 1990-х. Он показал, что теорема Ферма верна и уравнение aⁿ + bⁿ = cⁿ не имеет нетривиальных целочисленных решений при n ≥ 3.


Глава 15

Окружности

Окружности изящны и красивы. Глава 15 содержит россыпь любопытных фактов об этих основополагающих геометрических фигурах.

Точное определение

Математики избегают туманных определений, им подавай точность! Окружность – это множество точек на плоскости, равноудаленных от некоторой точки[160]. Давайте распутаем этот клубок.

Прежде всего, окружность представляет собой множество точек. Естественно, не любое множество точек образует окружность. Речь идет лишь об избранных точках. Избранных по какому принципу? Окружность – это множество точек, заданных двумя условиями: положительным числом r и точкой X. Как вы знаете, точку X мы называем центром окружности, а число r – радиусом.



При построении (чернилами на бумаге или пикселями на экране) окружность имеет некоторую толщину, но с математической точки зрения толщина окружности равна нулю.

Окружности – близкие родственники сфер. А что такое сфера? Это множество точек в пространстве, равноудаленных от некоторой точки. Обратите внимание: два определения почти одинаковы, за исключением того, что окружность находится в плоскости.

Уравнение окружности

Точки на плоскости задаются двумя координатами: x и y. Если мы записываем уравнение с двумя переменными, множество точек, чьи координаты удовлетворяют этому уравнению, задают какую-нибудь геометрическую фигуру.

Например, уравнению x² + y² = 1 удовлетворяют некоторые, но не все точки плоскости. Скажем, точка с координатами (1, 0) удовлетворяет уравнению, потому что 1² + 0² = 1. Точно так же точка (3/5, 4/5) тоже удовлетворяет уравнению:



С другой стороны, точка (1/2, 1/2) не удовлетворяет уравнению, потому что



Что можно сказать о точках, удовлетворяющих уравнению x² + y² = 1? Они задают окружность с центром в начале координат и радиусом 1.

Почему? Давайте подумаем о точке (x, y). Она задает прямоугольный треугольник. Проведем перпендикуляры к осям абсцисс и ординат и соединим отрезком нашу точку с началом координат, как показано на рисунке.



Длины катетов треугольника равны x и y, и по теореме Пифагора (см. главу 14) длина гипотенузы равна Это не что иное, как расстояние от точки (x, y) до точки (0, 0).

Если мы ищем точки, удаленные от начала координат на расстояние 1, они должны удовлетворять условию:



Возведем обе части в квадрат и получим x² + y² = 1!

В общем случае, если центр окружности c радиусом r расположен не в начале координат, а в точке (a, b), она задается уравнением:

(x – a)² + (y – b)² = r².

Треугольники прямо внутри

Любые две несовпадающие точки задают прямую, а вот три точки не обязательно принадлежат одной прямой. Но есть всего одна окружность, которая включает все три точки, не лежащие на одной прямой. Вы узнали из главы 13, что точка пересечения срединных перпендикуляров к сторонам треугольника является центром описанной окружности, так как эта точка равноудалена от всех трех вершин треугольника.



Вопрос: как вписать треугольник в полуокружность, чтобы одна из его сторон совпадала с диаметром окружности?

Вот отличный ответ: треугольник можно вписать в полуокружность исключительно в том случае, если один из его углов прямой (то есть речь идет о прямоугольном треугольнике).


Теорема Птолемея

Расставим на окружности четыре точки: A, B, C и D. Они задают четыре величины: длины сторон четырехугольника |AB|, |BC|, |CD|, |AD| и длины двух его диагоналей d1 и d2.



Теорема Птолемея изящно связывает эти величины:

d1 × d2 = |AB| × |CD| + |BC| × |AD|.

И наоборот, если длины сторон и диагоналей четырехугольника удовлетворяют этой формуле, его вершины лежат на одной окружности.

Упаковка

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги