Насколько плотно можно упаковать круги? Будем считать, что все круги имеют один радиус (скажем, 1) и мы хотим упаковать на значительном участке плоскости максимальное их число (представьте поднос, на котором нужно уместить как можно больше консервных банок).
Простейшая идея заключается в группировании кругов по четыре так, чтобы их центры образовывали квадрат. Тогда каждый круг, расположенный внутри, касается четырех соседних, а те, что на границе, касаются трех соседних:
Насколько эффективна такая упаковка? Один из критериев – измерить, какую часть плоскости покрывают все эти круги.
Посмотрим повнимательней на четыре круга, чьи центры лежат в вершинах квадрата. Радиусы кругов равны 1, потому сторона квадрата равна 2, а его площадь – 4. Квадрат не полностью покрыт областями, находящимися внутри кругов. Его перекрывает ровно четверть каждого из четырех кругов; таким образом, общая площадь кругов и квадрата равна площади одного круга, то есть π.
Соотношение между покрытой и непокрытой частями плоскости равно
Неплохо, но можно сделать и лучше. Пусть теперь центры шести окружностей совпадают с вершинами правильного шестиугольника, а седьмая окружность располагается внутри него:
При таком подходе круги накрывают больше 90 % плоскости. Подумайте, как это вычислить. Ответ – в конце главы.
Гексагональная упаковка кругов на плоскости – самая плотная.
Естественно, возникает вопрос: а как насчет трех измерений?[161]
Ответ, вероятно, был известен уже в античности, но со всей строгостью его сформулировал Иоганн Кеплер в начале XVII века. Кеплер утверждал, что наиболее плотная упаковка шаров такая, что при сечении плоскостью, проходящей через центры шаров в одном ряду, выясняется, что центры шести соседних шаров лежат на вершинах правильного шестиугольника, а центр седьмого шара совпадает с центром этого шестиугольника (см. рисунок выше). Тогда шары покрывают примерно 74 % пространства[162].Сложность состояла в том, чтобы доказать, что это действительно наиболее плотная упаковка и нет никаких альтернатив. С задачей на плоскости разобрались довольно быстро, но решение пространственной задачи потребовало 400 лет. Лишь в 1990-е годы Томас Хэйлс[163]
опубликовал сверхсложное доказательство, включающее теоретические выкладки и массу вычислений. Независимые эксперты дотошно изучили доказательство Хэйлса и не обнаружили там никаких погрешностей.Если вы начертите три окружности, которые попарно касаются друг друга, в пространстве между ними уместится четвертая окружность, касающаяся всех трех. Вот как выглядят четыре касающиеся друг друга окружности:
Как соотносятся размеры этих четырех окружностей? Иначе говоря, если мы знаем радиус трех окружностей, можем ли мы вычислить радиус четвертой?
Рене Декарт[164]
опубликовал решение этой задачи в начале XVII века. Разберем его результат в простейшем виде. Нам понадобится определениеДекарт пришел к следующему выводу: если кривизны «целующихся» окружностей равны
Например, если три большие окружности имеют радиус/кривизну 1, а кривизна малой окружности равна
Решение квадратного уравнения дает
Таким образом,
Отрицательное число нам не подходит, ведь как радиус/кривизна окружности может быть меньше нуля? Таким образом, кривизна малой окружности равна примерно 6,464, а радиус – примерно 0,1547.
Четыре окружности могут «поцеловаться» иначе. Начертим снова три окружности, касающиеся друг друга, но вместо малой окружности внутри опишем большую окружность, касающуюся всех трех окружностей снаружи:
Хорошая новость: решение Декарта по-прежнему остается в силе. Фокус состоит в том, чтобы взять отрицательный корень квадратного уравнения с обратным знаком!
Например, давайте снова рассмотрим три окружности с радиусом 1. Формула (*) вновь приводит нас к двум ответам. Но теперь большая окружность имеет кривизну где-то 0,464 и радиус где-то 2,1547.
Иначе говоря, формула Декарта работает и в том случае, когда мы вычисляем радиус малой окружности внутри трех, касающихся друг друга, и в том случае, когда мы ищем радиус большой окружности, охватывающей эти три.
Если корень уравнения отрицательный, речь идет об описанной окружности; в случае положительного корня речь идет о вписанной окружности. А теперь другой вопрос: что означает
Решение Декарта в 1930-е годы заново открыл Фредерик Содди[166]
. Он был настолько поражен элегантностью формулы, что сочинил стихотворение под названием «Прицельный поцелуй». Вот вторая строфа, где зарифмована формула (*):