Читаем Путевые заметки рассеянного магистра полностью

— Можно и так, — улыбнулся я. — Вот почему математика проникла во все области человеческих знаний. Конечно, не все явления можно охватить одной аналогией. Равенство y=ax, например, уже не пригодно для того, чтобы выяснить, какой путь пролетает за каждую секунду падающее тело. Тут нужен другой ключик: y=ax^2. Но и этот ключик пригоден в разных случаях: для вычисления площади круга и для многих других аналогичных задач… Разные группы задач требуют и разных ключей, иногда, кстати, очень сложных и замысловатых. Впрочем, учёные — мастера изготовлять и подбирать ключи самых причудливых фасонов!

Сева осторожно дотронулся до моей руки.

— Но какая всё-таки аналогия между кручением вала и мыльными пузырями?

— Сразу видно, что ты не учёный. Учёный никогда не скажет — мыльные пузыри, но непременно — мыльные плёнки.

— Хорошо, пусть плёнки. Но при чём они здесь?

— А вот при чём. Ты уже знаешь о науке, которую называют сопротивлением материалов, иначе — теорией упругости. Дело в том, что среди вопросов, которые эта наука изучает, есть и вопрос о кручении валов или каких-либо других тел. Кстати сказать, закручиваются не только те части машин, которые могут свободно вращаться. Закручивается в полёте от напора воздуха крыло самолёта, хотя крутиться ему не положено и оно крепко вделано в корпус машины. Однако если напор воздуха очень велик, крыло, перекрутившись, может вырваться из своего гнезда, и… ну, что будет тогда, лучше не разъяснять. Так вот, для того чтобы ничего такого не случилось, теория упругости точно подсчитывает, какими должны быть материалы и размеры той или иной детали, и добивается таким образом наибольшей прочности машины. Учёные составили математические уравнения и на случай кручения. Но вот беда — решить их было во многих случаях невозможно. Тут-то и помогла учёным математическая аналогия. Взяли они мыльную плёнку, закрепили по краям (работа тонкая!), нагрузили её и стали исследовать, как она провисает. Изучив поверхность провисшей плёнки, математики нашли для неё нужное уравнение. Нашли и увидели, что уравнение поверхности провисающей мыльной плёнки (или, как её называют, мембраны) в точности совпадает с уравнением кручения вала. И задача, которая казалась неразрешимой, была решена. Ведь экспериментировать на плёнке куда проще, чем изучать деформацию крутящегося вала или самолётного крыла… Так что насчёт ПАНАМЫ пока все.

— А ПАНАФИ? — забеспокоился Нулик. — С чем это едят?

Ребята шумно поддержали своего президента. А Сева — тот даже пробурчал что-то насчёт прогулки в лифте Эйнштейна.

С трудом удалось мне успокоить разбушевавшихся клубменов и убедить их дождаться следующего рассказа Магистра, где, конечно, будет подробное сообщение о его новом удивительном полёте.

— К тому же, — добавил я, — уже темнеет. А для такого вопроса, как лифт Эйнштейна, требуется полная ясность. И мы отправились по домам.

ПУТЕВЫЕ ЗАМЕТКИ РАССЕЯННОГО МАГИСТРА

Утки барона Мюнхгаузена

Друзья мои! Мне очень трудно рассказывать все с самого начала, да ещё по порядку, — при этом я обязательно теряю логическую нить. Поэтому начну с конца, потом перейду к началу, а уж затем к середине. Итак, начинаю с конца.

Мне невероятно повезло: я встретил своего давнего друга, барона Мюнхгаузена. Он охотился на львов в своей родной Тарасконии. Увидев меня, барон безумно обрадовался, бросил ружьё и попросил львов не разбегаться, пока не расскажет мне одну из своих правдивых историй.

Оказывается, следуя моему примеру, барон увлёкся математикой и с ходу предложил мне задумать любое большое число, затем отнять от него сумму его цифр, полученную разность умножить тоже на любое число, а в произведении вычеркнуть любую цифру. Наконец, оставшиеся цифры расположить в любом порядке и прочитать полученное число.

— Я немедленно угадаю цифру, которую вы вычеркнули! — заверил меня Мюнхгаузен.

Давно я так не смеялся. Ну и шутник! Предлагает выбрать все любое и берётся отгадать зачёркнутую цифру. Поразительное самомнение! Правильный ответ можно угадать разве случайно. Впрочем, Единичке это почему-то удалось. Везучая девчонка!

Но всё же, должен сказать, у нас с бароном было о чём побеседовать. Он с большим интересом выслушал рассказ о моих скитаниях и, как я и ожидал, не усомнился ни в чём. Приятно всё-таки поболтать с человеком, который тебя понимает!

Не подумайте только, что я всё время говорил о себе. С удовольствием вспоминали мы различные приключения моего друга: и о том, как он привязал свою лошадь к шпилю колокольни, и о том, как летел на пушечном ядре и как одним выстрелом нанизал на нитку целую стаю уток.

Барон был тронут, но особенно оживился, когда зашёл разговор об утках.

Перейти на страницу:

Похожие книги

Физическое воспитание детей младшего школьного возраста
Физическое воспитание детей младшего школьного возраста

В настоящем пособии приведены результаты собственных исследований и данные литературы, касающиеся задач, принципов организации и содержания практической части физического воспитания детей младшего школьного возраста, отнесенных к специальной медицинской группе. В заключительной части работы представлены комплексы упражнений, используемые в системе двигательной реабилитации при отдельных заболеваниях и патологических состояниях, наиболее часто являющихся причиной зачисления в специальную медицинскую группу.Пособие предназначено для учителей физической культуры общеобразовательных учреждений, инструкторов ЛФК, студентов колледжей и вузов физической культуры.

Татьяна Евгеньевна Виленская , Т. Е. Виленская

Детская образовательная литература / Учебники и пособия для среднего и специального образования / Спорт / Книги Для Детей / Дом и досуг
Чудо-компасы
Чудо-компасы

«Удивительные, часто поражающие наше воображение действия совершают животные. Многие птицы улетают осенью на сотни и тысячи километров и весной вновь возвращаются на родину. Киты регулярно мигрируют как в Северном полушарии, так и в Южном, передвигаясь по океанским просторам без видимых ориентиров. Большие расстояния, проплывают морские черепахи, прежде чем достигнут пляжей, где откладывают яйца. Под водой, и также без определенных ориентиров, проходят сотни километров стаи сельдей, идущие на нерестилища. Совы и летучие мыши даже с заклеенными непрозрачным пластырем глазами продолжают успешно ловить добычу, первые — точно определяя ее местонахождение по шороху, а вторые — «прощупывая» пространство ультразвуковым лучом и ловя его отражение от тела добычи. Дельфины без помощи зрения, пользуясь той же эхолокацией, отличают препятствия и несъедобные предметы от пищи.А как находят пищу рыбы в абсолютно непрозрачной воде Нила, Аму-Дарьи и некоторых других рек? Чем и как помогает им электрический орган? Могут ли ориентироваться животные по магнитному полю Земли? Как находят дорогу к родному гнезду, норе или иному убежищу птицы и звери, перевезенные в заведомо неизвестное им место — иногда за десятки, сотни и даже тысячи километров от дома? Как пчелы передают друг другу информацию о том, где находятся медоносные растении?Эти и множество других, подчас еще более сложных загадок встают перед пытливым взором наблюдателя, который видит, что животные могут все это делать, но не знает, с помощью каких средств они этого достигают». В книге К. Иосифова рассказывается об изучении способности животных ориентироваться в пространстве, о тех загадках, которые уже раскрыты человеком и о тех, которые еще ждут своих исследователей.

Константин Васильевич Иосифов

Детская образовательная литература