Секей делает это. В его моделях нервные центры устанавливают меж собой отношения, которые не были предусмотрены природой. Сигналы, порождаемые нервными клетками, убегают по тонким пучкам проводников туда, куда их направляет прихоть экспериментатора. Как же ему удается получать такие модели?
Есть один секрет. Нужно конструировать модель не из самих мозговых «деталей», а из их заготовок — кусочков зародышевой ткани, в которой еще нет нервных клеток, но они неминуемо должны развиться. В этом весь фокус.
Такие эмбриональные кусочки — несравненно более пластичный материал, чем зрелые нервные элементы. Даже на самом необычном месте и в самом невероятном соседстве они, как правило, хорошо приживаются, продолжают расти и развиваться, и, когда в назначенный срок к ним приходит пора зрелости, когда в них вызревают настоящие нервные клетки, эти клетки начинают работать в таких связях и отношениях, которые им предписывают условия операции.
Оперируя зародышей, можно изменять отношения не только внутри мозга, но и между мозгом и другими органами тела. Если, например, прирастить зародышу зачаток лапки в таком месте, где лапки никогда не растут, мозг вынужден будет послать к этой лапке нервы. В результате возникнет связь с лапкой у такой части мозга, которая в нормальных условиях лапок не иннервирует.
Но разве можно сделать из четырехногого животного пятиногое? Все можно, была бы охота.
Если говорить точнее, Секей прилагает к познанию мозга метод, разработанный наукой, которая называется «экспериментальной эмбриологией». Сама эта наука не проявляет особого интереса к организации мозга, у нее иные задачи, но оказалось, что ее метод открывает перед наукой о мозге поразительные возможности.
Стены лаборатории, в которой работает Секей, поперевидели всяких чудес. Каких только не было здесь монстров! В аквариумах сидели шестиногие тритоны. Приходил человек, пускал тритончика на стол и долго, внимательно смотрел, как тот движет лапками.
В плавнике тритончика Секей устраивал маленький искусственный мозг, каких-нибудь два десятка нервных клеток. Ведь настоящий мозг слишком сложен, легко ли разобраться в клубке из многих миллионов нейронов? Чтобы искусственному микромозгу было чем руководить, рядом с ним, на плавнике же, выращивалась лапка. Микромозг послушно посылал в нее свои микронервы. А чтобы можно было вызвать в микромозге страсти, по соседству высаживались чувствительные клетки. Получалась целая рефлекторная дуга. Если чувствительные клетки тронуть волоском, спектакль разыгрывался в неукоснительном порядке: импульсы от чувствительных клеток устремлялись к микромозгу, он возбуждался, и лапка возмущенно двигалась. А будут ли у этой лапки судороги, если в микромозг попадет яд столбнячных бактерий?
Секей работал. Каждый опыт был ответом на вопрос. И сам был вопросом.
Можно ли выводы, полученные на тритонах, переносить на теплокровных животных?
Секей берется за сложнейшую работу: он хочет выполнить подобные операции на зародыше курицы.
Развитие зародыша идет три недели, на двадцать первые сутки из яйца выходит цыпленок. Секей оперирует не на третьей неделе, а на третьем дне развития зародыша. Что он оперирует? Если нам дадут такое яйцо, мы сделаем яичницу и не увидим никакого зародыша, он еле заметен у краешка желтка.
Секей делает на таком зародыше операции, пересаживает ему кусочки ткани от других зародышей. Операцию надо провести так, чтобы зародыш продолжал развиваться и в свой срок вылез из яйца.
И вот на столе, по которому бегали шестиногие тритончики, появляются трехногие цыплята и цыплята, у которых мозг перекроен на манер, известный одному экспериментатору.
Чтобы добиться успеха, Секей должен был использовать не только методику экспериментальной эмбриологии, но и некоторые закономерности развития, найденные этой наукой.
Организм животного состоит из миллиардов клеток. Клетки самые разные: нервные, железистые, мышечные, покровные, клетки крови и много всяких других. Но, несмотря на свое различие, они все восходят к общей праматери — яйцеклетке, от которой произошли путем последовательных делений. Почему же результаты деления различны? Почему клетки, делящиеся и развивающиеся в одной части зародыша, становятся мышечными, а в другой, допустим, печеночными, хотя и те и другие брали начало от общего исходного пункта? В чем секрет специализации клеток?
Такова проблема эмбриологии. Экспериментальная эмбриология старается решить эту проблему с помощью опыта, эксперимента, так как рассуждать можно без конца, а исследовать механизм можно лишь опытным путем.