Назначение самолетов с жидкостно-реактивными двигателями определяется свойствами ЖРД — большой тягой и, соответственно, большой мощностью на больших скоростях полета и больших высотах и малой экономичностью, т. е. большим расходом топлива. Поэтому ЖРД обычно устанавливаются на военных самолетах — истребителях-перехватчиках. Задача такого самолета — при получении сигнала о приближении самолетов противника быстро взлететь и набрать большую высоту, на которой обычно летят эти самолеты, а затем, используя свое преимущество в скорости полета, навязать противнику воздушный бой. Общая продолжительность полета самолета с жидкостно-реактивным двигателем определяется запасом топлива на самолете и составляет 10–15 минут
[17], поэтому эти самолеты обычно могут совершать боевые операции лишь в районе своего аэродрома.Фиг. 37. Схема установки ЖРД на самолете.
Фиг. 38. Ракетный истребитель (вид в трех проекциях)
На фиг. 38 показан истребитель-перехватчик с описанным выше ЖРД. Размеры этого самолета, как и других самолетов этого типа, обычно невелики. Полный вес самолета с топливом составляет 5100
Фиг. 39. Устройство ракетного самолета.
На фиг. 39 показано устройство другого самолета с ЖРД; это — опытный самолет, построенный для достижения скорости полета, превышающей скорость звука (т. е. 1200
Фиг. 40. Четырехкамерный авиационный ЖРД.
Внешний вид этого двигателя показан на фиг. 40.
Наряду с основным применением ЖРД в качестве двигателей для дальних ракет и ракетных самолетов они применяются в настоящее время и в ряде других случаев.
Довольно широкое применение получили ЖРД в качестве двигателей тяжелых ракетных снарядов
[18], подобных представленному на фиг. 41. Двигатель этого снаряда может служить примером простейшего ЖРД. Подача топлива (бензин и жидкий кислород) в камеру сгорания этого двигателя производится под давлением нейтрального газа (азота). На фиг. 42 показана схема тяжелой ракеты, применявшейся в качестве мощного зенитного снаряда; на схеме приведены габаритные размеры ракеты.Применяются ЖРД и в качестве стартовых авиационных двигателей. В этом случае иногда используется низкотемпературная реакция разложения перекиси водорода, отчего такие двигатели называют «холодными».
Имеются случаи применения ЖРД в качестве ускорителей для самолетов, в частности, самолетов с турбореактивными двигателями. Насосы подачи топлива з этом случае приводятся иногда от вала турбореактивного двигателя.
ЖРД применяются наряду с пороховыми двигателями также для старта и разгона летающих аппаратов (или их моделей) с прямоточными воздушно-реактивными двигателями. Как известно, эти двигатели развивают очень большую тягу при высоких скоростях полета, больших скорости звука, но вовсе не развивают тяги при взлете.
Наконец, следует упомянуть еще об одном применении ЖРД, имеющем место в последнее время. Для изучения поведения самолета при большой скорости полета, приближающейся к скорости звука и превышающей ее, требуется проведение серьезной и дорогостоящей исследовательской работы. В частности, требуется определение сопротивления крыльев самолета (профилей), которое обычно производится в специальных аэродинамических трубах. Для создания в таких трубах условий, соответствующих полету самолета на большой скорости, приходится иметь силовые установки очень большой мощности для привода вентиляторов, создающих поток в трубе. Вследствие этого сооружение и эксплоатация труб для проведения испытания при сверхзвуковых скоростях требуют огромных затрат.
В последнее время, наряду со строительством сверхзвуковых труб, задача исследования различных профилей крыльев скоростных самолетов, как, кстати сказать, и испытания прямоточных ВРД, решается также с помощью жидкостно-реактивных
Фиг. 41. Ракетный снаряд с ЖРД.
двигателей. По одному из этих способов исследуемый профиль устанавливается на дальней ракете с ЖРД, подобной описанной выше, и все показания приборов, измеряющих сопротивление профиля в полете, передаются на землю с помощью радио-телеметрических устройств.
Фиг. 42. Схема устройства мощного зенитного снаряда с ЖРД.
7 — боевая головка; 2 — баллон со сжатым азотом; 3 — бак с окислителем; 4 — бак с горючим; 5 — жидкостно-реактивный двигатель.