Читаем Ракетные двигатели полностью

Совершенно новые возможности открыло бы применение однокомпонентного, так называемого атомарного топлива. Дело в том, что для разложения молекул разных веществ на атомы обычно приходится затрачивать большое количество тепла или другой энергии (например электрической), а при обратном соединении атомов в молекулы это количество тепла снова выделяется. Так, молекулы водорода, как известно, состоящие из двух атомов, можно расщепить с образованием атомарного водорода пропусканием водорода через вольтову дугу. Сразу же вслед за этим атомы водорода вновь соединяются в молекулы с выделением большого количества тепла, вследствие чего водород приобретает весьма высокую температуру. Этот процесс используется в так называемой атомно-водородной сварке. Если бы можно было воспользоваться атомарным водородом в качестве топлива для ракетных двигателей, то можно было бы получить исключительно большие скорости истечения, достигающие 10 000 м/сек, т. е. в четыре-пять раз больше существующих скоростей. Другим преимуществом этого топлива является то, что при его использовании нет нужды во втором компоненте — окислителе. Использование атомарного водорода означало бы по существу использование электрической энергии для создания тяги, так как разложение молекул водорода на атомы происходит при затрате электрической энергии. Однако практически использовать атомарный водород в качестве топлива в ракетном двигателе пока не удается, так как соединение атомов водорода в молекулы происходит сразу же, через сотые доли секунды, после их расщепления в вольтовой дуге. Очевидно, что сначала надо найти способ сохранения атомарного водорода, либо способ расщепления молекул водорода в самой камере сгорания, например, с использованием для этой цели атомной (ядерной) энергии. Имея в виду, что жидкий водород имеет очень небольшой удельный вес (около 0,07), вследствие чего для его хранения потребовались бы баки большого объема, могло бы оказаться целесообразным применение в качестве атомарного топлива других, более плотных, веществ. Например, можно было бы применить обычную воду, каждая молекула которой, как известно, состоит из двух атомов водорода и одного атома кислорода. Удельная тяга при этом была бы, правда, ниже, чем в случае атомарного водорода и составила примерно 3/4 от последней.

Усовершенствование существующих конструкций ЖРД обычно характеризуется увеличением давления в камере сгорания от 15–20 ата, принятых в настоящее время, до 30–50 и более, вплоть до 100 ата, так как при этом уменьшаются размеры и улучшается работа двигателя.

Увеличение абсолютных значений тяги, т. е. мощности существующих ЖРД, не встречает принципиальных трудностей. Двигатели с тягой в 50 и даже 100 тонн могут быть созданы уже при современном уровне техники. Так, на фиг. 46 показана фотография камеры сгорания (с змеевиком охлаждения) опытного 100-тонного двигателя. Разрез модели двигателя с такой системой охлаждения показан на фиг. 47.

Одним из чрезвычайно серьезных условий дальнейшего развития ЖРД является улучшение охлаждения стенок камеры сгорания и сопла, а также подыскание для них более жаростойких материалов; без этого невозможно дальнейшее повышение температуры газов в камере сгорания, а следовательно, и удельной тяги двигателя. Одним из перспективных методов охлаждения является сравнительно новый способ, получивший название «охлаждения выпотеванием». В этом случае стенки изготовляются из пористого материала и через эти мельчайшие поры продавливается снаружи внутрь камеры или сопла вода или иная охлаждающая жидкость либо газ (например, азот), которые затем образуют защитный слой на внутренней поверхности стенки (эта поверхность как бы «потеет»). Температура стенки при этом способе охлаждения оказывается значительно более низкой, чем при других известных способах.

Фиг. 46. Система охлаждения камеры сгорания опытного ЖРД с тягой 100 тонн.


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже