Обращает на себя внимание исключительно большое влияние, оказываемое крыльями на дальность полета ракеты. Крылатые ракеты даже при современном уровне развития ракетной техники могут покрывать огромные расстояния.
Применение же улучшенных топлив, связанное со значительным увеличением удельной тяги двигателей, открывает здесь новые широчайшие возможности.
Фиг. 49.Схема составной (тройной) ракеты
Уже сейчас представляется принципиально возможным создание ракетного самолета, который мог бы совершить беспосадочный полет до любой цели на земном шаре и возвратиться обратно. Конечно, этому должна предшествовать еще огромная научно-исследовательская и конструкторская работа, должны быть преодолены многие трудности и решены серьезные инженерные задачи.
На первый взгляд создание такого сверхдальнего ракетного самолета кажется парадоксальным. Мы ведь знаем, что ракетный двигатель потребляет очень много топлива, он неэкономичен. Поэтому в настоящее время ракетные самолеты, как было указано в предыдущем разделе, употребляются только в качестве истребителей-перехватчиков, имеющих весьма небольшую продолжительность полета и не отдаляющихся от своей базы — аэродрома. И вдруг — сверхдальний ракетный самолет. Однако противоречия здесь, конечно, нет; достаточно вспомнить сверхдальний полет составной ракеты, о которой говорилось выше. Сверхдальний полет становится возможным потому, что ракетный двигатель способен работать на любой высоте, его работа не зависит от наличия кислорода в атмосфере. Поэтому ракетный самолет может достигать чрезвычайно больших высот, а потом совершать оттуда планирующий полет на большие расстояния. Двигатель такого самолета работает лишь в течение небольшого времени, пока самолет набирает высоту, поэтому запас топлива на самолете (речь идет, конечно, о новых, улучшенных топливах с повышенной удельной тягой) оказывается достаточным. Впрочем, и весь такой сверхдальний полет длится гораздо меньше, чем дальние полеты современных самолетов, так как средняя скорость ракетного самолета при этом в десятки раз больше скорости обычного самолета. Это становится возможным благодаря тому, что весь полет происходит на очень больших высотах, где сопротивление воздуха вследствие его разреженности намного меньше, чем у земли…
Благодаря большой скорости при полете вокруг Земли, самолет будет снижаться лишь очень постепенно. Кроме того, когда будут достигнуты меньшие высоты с более плотной атмосферой, то начнет сказываться подъемная сила крыла и самолет как бы отразится от этих плотных слоев, как отражается от воды брошенный плашмя камень, и снова взмоет вверх. Совершая ряд таких затухающих колебаний, самолет окажется способным облететь вокруг Земли.
Фиг. 50. Проект составной ракеты.
1 — стабилизатор; 2 — корпус ракеты (двойные стенки служат для охлаждения); 3 — реактивное сопло; 4 — камера сгорания; 5 — бак с перекисью водорода; 6 — турбонасосный агрегат; 7 — бак с кислородом; 8 — бак со спиртом; 9 — парашют; 10 — автоматическое сцепление ракет.
От такого дальнего ракетного самолета уже рукой подать и до космических кораблей — мечты Циолковского и его последователей. Овладение мировыми пространствами, преодоление силы земного притяжения, надо полагать, будет происходить постепенно, по мере усовершенствования ракетных двигателей и ракетных кораблей, увеличения удельной тяги, использования новых топлив и новых источников энергии, овладения техникой ракетного полета.
В качестве первого этапа можно себе представить создание ракетного корабля, способного бесконечно долго летать вокруг земли, превратившись таким образом в ее искусственного спутника. Конечно, такой полет вокруг Земли должен происходить на очень больших высотах, в 500—1000
Фиг. 51. Космический ракетный корабль.
При таком круговом полете наш ракетный корабль будет совершать свой путь вокруг Земли за 1,5–2 часа.