Читаем Ракетные двигатели полностью

Наконец, следует указать и на те огромные перспективы, которые открывает возможность применения в ракетных двигателях энергии, выделяемой при распаде атомов — ядерной энергии. Правда, непосредственная скоростная энергия частиц, вылетающих с огромной скоростью (около 30 000  км/сек!) из атомов при их распаде вряд ли будет использована. Вероятнее всего, будет использована тепловая энергия, выделяющаяся в «атомном котле»; как известно, эта энергия в миллионы раз больше тепла, выделяющегося при сгорании. В этом случае специальные атомные реакторы могли бы заменить камеру сгорания ракетного двигателя, повышая температуру какого-нибудь рабочего тела, которое уже и будет создавать реактивную тягу, вытекая с огромной скоростью из двигателя в атмосферу. В качестве такого рабочего тела целесообразно применить вещества с малым молекулярным весом. При прочих равных условиях эти вещества вытекают из двигателя с большей скоростью; идеальным в этом отношении был бы водород, теоретическая скорость истечения которого при температуре 3700 °C равна 7000 м/сек. Одним из чрезвычайно серьезных препятствий в применении атомной энергии для ракетных двигателей, как и для других авиационных двигателей, является необходимость защиты экипажа ракетного корабля от вредного действия радиоактивного излучения, сопровождающего распад ядер атомов. Для беспилотных ракет это препятствие, очевидно, отпадает.

Фиг. 47. Модель жидкостно-реактивного двигателя.


Какие же возможности открывает, применение новых, усовершенствованных ракетных двигателей?

Прежде всего нужно подчеркнуть, что и в настоящее время использованы далеко не все возможности существующих ракетных двигателей. Взглянем на фиг. 48, на которой показаны траектории полета различных ракет. Первая кривая представляет собой траекторию полета исходной ракеты (такую же, как на фиг. 29). В качестве исходной ракеты принята ракета, изображенная на фиг. 26 и 27; двигатель ее был нами подробно описан. Вторая кривая показывает траекторию полета той же ракеты, но снабженной крыльями, как у самолета. Только из-за этого дальность полета ракеты увеличивается с 290–300 до 550–560  км.

Значительно большие возможности открывает применение так называемых составных ракет, т. е. комбинаций из двух или большего числа обычных ракет. После выгорания топлива в одной из таких ракет она автоматически отделяется, а оставшиеся ракеты продолжают дальнейший полет. Затем начинает работать двигатель следующей ракеты, которая потом также отделяется, и т. д. (фиг. 49). Идея использования таких составных ракет принадлежит Циолковскому, который называл их «ракетными поездами». Легко видеть, что конечная скорость последней из ракет, составляющих такой «поезд», будет больше, чем была бы скорость всего «поезда», благодаря уменьшению ускоряемой массы ракеты. Следует отметить, что Циолковский разработал наряду с составной ракетой и идею переливания топлива из одной ракеты в другую в полете, что также открывает большие возможности и в некоторых отношениях даже превосходит систему «поезда».

Фиг. 48. Траектории полета различных ракет.

1 — исходная ракета; 2 — исходная ракета с крыльями; 3 — составная ракета (1-й вариант); 4 — составная ракета (2-й вариант).


Третья и четвертая кривые на фиг. 48 отвечают составной ракете, состоящей из двух ракет. Одна из этих ракет, задняя, т. е. отделяющаяся после того, как ее двигатель выработает все топливо, представляет собой большую бескрылую ракету с тягой около 180 тонн. Другая ракета, продолжающая полет, такая же, как и крылатая ракета, описанная выше. Общая длина такой составной ракеты (фиг. 50) превышает 30 м, а вес равен почти 100 тонн, из них около 2/3 составляет топливо.

Полет составной ракеты можно осуществить разными способами. Третья кривая соответствует тому случаю, когда составная ракета вначале поднимается вертикально вверх, причем этот подъем длится до тех пор, пока двигатель задней бескрылой ракеты не остановится из-за выгорания всего топлива этой ракеты. После этого задняя ракета автоматически отделяется и опускается с помощью парашюта на землю, и начинает работать двигатель второй, крылатой, ракеты. Эта ракета совершает горизонтальный полет на постоянной высоте, равной примерно 24  км, со скоростью 2600  км/час, так что общая дальность полета составляет около 2500  км, а его продолжительность 70 минут.

По другому варианту (четвертая кривая) крылатая ракета после отделения бескрылой продолжает набор высоты. После остановки двигателя этой ракеты из-за выработки топлива она совершает свободный полет, полого планируя с помощью крыльев в нижних, более плотных слоях атмосферы. В этом случае ракета достигает высоты около 300  км, причем она покрывает за 45 минут расстояние немногим менее 5000  км. При таком полете будет развиваться скорость свыше 12 000  км/час, что значительно превышает максимальные скорости, достигнутые в настоящее время.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже